CONTENTS

	Preface	xiii
1	Introduction	1
1-1	What is a Digital Filter?	1
1-2	Anatomy of a Digital Filter	3
1-3	Frequency Domain Description of Signals and Systems	5
1-4	Some Typical Applications of Digital Filters	7
1-5	Replacing Analog Filters with Digital Filters	12
1-6	Overview of the Course	13
1-7	Description of the Computer Projects	17
1-8	Summary	- 18
2	Discrete-time Description of Signals and	
	Systems	20
2-1	Introduction	20
2-2	Discrete-Time Sequences	20
2-3	Superposition Principle for Linear Systems	26
2-4	Unit-sample Response Sequence	27
2-5	Time-Invariant Systems	31
2-6	Stability Criterion for Discrete-time Systems	38
2-7	Causality Criterion for Discrete-time systems	40
2-8	Linear Constant-Coefficient Difference Equations	41
2-9	Suggested Programming Style	44
2-10	Writing a Digital Filter Program	45
2-11	Summary	55
3	Fourier Transform of Discrete-time Signals	65
3-1	Introduction	65
3-2	Definition of the Fourier Transform	65
3-3	Important Properties of the Fourier Transform	69
5-5	important rioperties of the routier transform	0,

3-4	Properties of the Fourier Transform for Real-valued Sequences	72
3-5	Program to Evaluate the Fourier Transform by Computer	80
3-6	Use of the Fourier Transform in Signal Processing	82
3-7	Fourier Transform of Special Sequences	84
3-8	The Inverse Fourier Transform	92
3-9	Fourier Transform of the Product of Two Discrete-time	
	Sequences	94
3-10	Sampling a Continuous Function to Generate a Sequence	96
3-11	Reconstruction of Continuous-time Signals from Discrete-time	
	Sequences	105
3-12	Summary	110
4	The Discrete Fourier Transform	118
4-1	Introduction	118
4-2	The Definition of the Discrete Fourier Transform (DFT)	119
4-3	Computing the Discrete Fourier Transform from the Discrete-	119
4-3	time Sequence	121
4-4	Properties of the DFT	128
4-5	Circular Convolution	130
4-6	Performing a Linear Convolution with the DFT	132
4-7	Computations for Evaluating the DFT	133
4-8	Programming the Discrete Fourier Transform	135
4-9	Increasing the Computational Speed of the DFT	136
4-10	Intuitive Explanation for the Decimation-in-time FFT	130
4-10	Algorithm	142
4-11	Analytic Derivation of the Decimation-in-time FFT Algorithm	146
4-12	Some General Observations about the FFT	148
4-13	Other Fast Realizations of the DFT	150
4-14		150
4-14	Summary	130
5	The z-transform	157
5-1	Introduction	157
5-2	The Definition of the z-transform	158
5-3		160
5-4	Properties of the z-transform The System Function of a Digital Filter	
5-5	The System Function of a Digital Filter	162
5-6	Combining Filter Sections to Form More Complex Filters	164
	Digital Filter Implementation from the System Function	167
5-7	The Complex z-plane	169
5-8	The Region of Convergence in the z-plane	174
5-9	Determining the Filter Coefficients from the Singularity Locations	178
5-10		183
5-10	Geometric Evaluation of the z-transform in the z-plane Relationship Between the Fourier Transform and the	103
3-11	z-transform	184
5-12	The z-transform of Symmetric Sequences	188
5-12	The Inverse z-transform	196
5-13	Summary	203

6	Digital Filter Structures	208
6-1	Introduction	208
6-2	System Describing Equations	209
6-3	Filter Catagories	209
6-4	The Direct Form I and II Structures	210
6-5	Cascade Combination of Second-order Sections	214
6-6	Parallel Combination of Second-order Sections	218
6-7	Linear-phase FIR Filter Structures	220
6-8	Frequency-sampling Structure for the FIR Filter	221
6-9	Summary	227
7	From Analysis to Synthesis	230
7-1	Introduction	230
7-2	Interrelationships of Analytic Methods	231
7-3	Practical Magnitude Response Specifications	236
7-4	Log-magnitude Response Curves	238
7-5	Programs to Compute the Log-magnitude Response of Poles	
	and Zeros	239
7-6	Phase Response Considerations	243
7-7	Steps in Performing a Filter Design	246
7-8	Choice of Filter Type	246
7-9	Interactive Filter Design by Intuitive Pole/Zero	247
	Placement Program Program	256
7-10	Writing an Interactive Design Program	258
7-11	Summary	200
8	Infinite Impulse Response Filter Design	
	Techniques	262
8-1	Introduction	262
8-2	Analog Filter System Function and Frequency Response	263
8-3	Analog Lowpass Filter Design Techniques	263
8-4	Methods to Convert Analog Filters into Digital Filters	280
8-5	Frequency Transformations for Converting Lowpass Filters	
	into other Types	295
8-6	All-pass Filters for Phase Response Compensation	310
8-7	Summary	312
9	Finite Impulse Response Filter Design	
,		318
	Techniques	318
9-1	Introduction	319
9-2	Designing FIR Filters with the Windowing Method	319
9-3	The DFT Method for Approximating the Desired Unit-Sample	341
0.4	Response	341
9-4	Designing FIR Filters by Combining the DFT and Window	348
9-5	Methods Designing FIR Filters with the Frequency-sampling Method	361
9-0	Designing I it I mere men i requeste, sampling	

XII CONTENTS

9-6 9-7	Use of the FFT Algorithm to Perform FIR Filtering Summary	379 384
10	Finite-precision Effects	390
10-1	Introduction	390
10-2	Finite-precision Number Representation within the Computer	391
10-3	Quantization Error in Analog-to-digital Conversion	395
10-4	Expressing Coefficients in Finite Precision	399
10-5	Performing Arithmetic in Finite-Precision Number Systems	404
10-6	Effects of Finite-Precision Arithmetic on Digital Filters	409
10-7	Programs to Simulate Quantization Effects	411
10-8	Summary	416
11	Inverse Filtering	422
11-1	Introduction	422
11-2	Applications of Inverse Filters	423
11-3	Minimum Phase Systems	426
11-4	Formulating the Problem for Applying an Inverse Filter	429
11-5	FIR Filter Approximations to the Inverse Filter	432
11-6	Discrete Hilbert Transform Relationship for Minimum-Phase	
	Systems	433
11-7	Designing Inverse Filters with the Discrete Hilbert Transform	436
11-8	The Effects of Noise on Inverse Filters	441
11-9	Summary	448
	Appendix A	455
	Appendix B	469
	Index	471