FACULTAD DE INGENIERIA
CENTRO DE MEDIOS
BIBLIOTECA

N: 1421

Contents

Preface	page xi
Note to the instructor	xvii
Conventions and notations	XX
1: Optimal strategies for the metabolism of storage materials	1
Biological background	1
Calculation of P and S at the end of the day	3
Calculating the net "profit" from a given amount of	_
storage material	4
The final mathematical problem: maximize profit	7
A simplified model	7
Solution of the simplified mathematical problem	8
Conclusions from the mathematical results	9
The full problem	10
Final remarks	12
Exercises	13
Supplement: List of symbols and their definitions	15
2: Recursion relations in ecological and cellular population	
dynamics	16
Constant birthrate	16
Birthrate that decreases linearly with population level	17
Steady solutions to equation (7) and their stability	18
Conjectured global behavior	19
The role of parameters	23
Control oscillations	23
The period-doubling route to chaos	25
Chaotic dynamics in cardiac cells	28
Cell maturation	30
Exercises	31
Supplement: A program to iterate equation (2.7)	34

Contents	vi
3: Population genetics: separate generations	36
Formulation	36
Steady-state solutions	38
Stability theory	39
Conjectured global behavior	42
Quantitative considerations	44
Discussion	47
Exercises	48
4: Enzyme kinetics	51
Law of mass action	51
Enzyme and substrate	53
Time scale	55
The quasi-steady state	57
Consequences of the quasi-steady-state approximation	58
Validity of the quasi-steady-state approximation	60
Cooperative kinetics	62
Percentage ligand bound in steady state	64
The cooperative enzymatic dimer	67
Product regulation	68
Exercises	70
Supplement: Solution of equations (4.15) and (4.16)	73
5: The chemostat	75
Choice of variables	76
Differential equations and initial conditions	77
Steady solutions	81
Dimensionless variables	84
Stability of the steady states	85
Qualitative behavior and the phase plane	87
Final remarks	91
Exercises	94
6: A model of the cellular slime mold cAMP signaling system	97
The slime mold life cycle	97
The role of cAMP	98
The model	100
Dimensionless variables	103
Steady-state solutions	104
Stability of the steady state	105

Contents	vii
The developmental path	108
A simplified model	111
Phase-plane analysis of the simplified model	112
Explanation of relay and oscillation	114
Phase space and the state point	117
Robustness of the results	120
Interaction between analytic and numerical methods	120
Comparison with experiment	122
A modified model	124
Further comparisons with experiment	126
Exercises	128
7: Diffusion	130
The general balance law	130
Fick's law	133
Diffusivity of motile bacteria	135
The rule of thumb for diffusion	140
Exercises	141
Supplement: Verification of equation (7.12)	143
8: Developmental pattern formation and stability theory	146
Background	146
Formulation	149
Dimensionless variables	150
Spatially homogeneous solutions	152
The spatially inhomogeneous case	153
Conditions for inhomogeneous instability	155
The critical wavelength	158
Numerical analysis of the unstable case	160
Patterns in finite intervals	164
The initial-value problem	166
Numerical analysis of the unstable case: finite interval	171
The wavelength for maximum growth rate	173
Further examination of pattern size	178
Modeling experiments in hydra	180
Two approaches to vein patterns in plants	183
Exercises	191
Supplement: Boundary conditions in the numerical	
analysis and model equations for nonlinear	
behavior	193

Contents	viii
9: A mechanical basis for morphogenesis	200
Modeling active domains	200
Simulations of folding cell sheets	202
Calcium-actin-myosin interaction	205
Effect of Ca-trigger maturation	208
The possible role of a developmental path	214
Chemical versus mechanical signaling	216
Skin organ primordia and cartilage condensations	220
A final word	220
Exercises	221
Mathematical appendixes	
1: Mathematical prerequisites	223
Function	223
Limit	223
Derivative	223
Higher derivatives	225
Basic rules for manipulating derivatives	226
The chain rule	227
Implicit differentiation	227
Important functions and their derivatives	227
Partial derivative	229
Exercises	230
	222
2: Infinite series and Taylor approximations	232
Exercises	235
3: Difference equations	237
Linear difference equations	237
Linear equations with constant coefficients	238
Steady-state solutions and their stability	241
Exercises	243
	244
4: Linear differential equations with constant coefficients	244
First-order equations - constant coefficients	244
Linear equations	244
Second-order linear equations - constant coefficients	246
A system of two linear equations	247
Final remark	248
Exercises	249

Contents	ix
5: Phase-plane analysis	250
Trajectories in the phase plane	250
Steady states	252
Phase portraits near steady states	254
Qualitative behavior of the phase plane	260
Exercises	262
6: Complex numbers	272
Exercises	274
7: Dimensionless variables	275
Dimerization: a sample problem	275
Introducing dimensionless variables	276
Advantages of dimensionless variables	279
Nondimensionalizing a functional relationship	280
Exercises	281
8: Integration	282
Exercises	286
Hints and answers for selected exercises	207
References	287
	291
Index	297

