Contents

Contributors xxxvii
Part I An Overall View 1
1 Brain and Behavior 3
Eric R. Kandel
Two Alternative Views Have Been Advanced on the Relationship between Brain and Behavior 4
Regions of the Brain Are Specialized for Different Functions 5
Cognitive Function Can Be Localized within the Cerebral Cortex 6
Affective and Character Traits Also Are Anatomically Localizable 10
Selected Readings 11
References 12
2 Nerve Cells and Behavior 13
Eric R. Kandel
The Nervous System Contains Two Classes of Cells 14
Nerve Cells 14
Glial Cells 17

Preface xxxiii

Nerve Cells Are the Signaling Units of Behavioral Responses 19
Resting Membrane Potential 19
Input Signal: Receptor Potentials and Synapti Potentials 21
Signal Integration 22
Conducting Signal: The Action Potential 22
Output or Secretory Signal 22
Location of Signaling Functions within Neurons 22
Similar Signaling Machanisms Occur in All

Similar Signaling Mechanisms Occur in All Nerve Cells 22

Selected Readings 24

References 24

Part II Cell and Molecular Biology of the Neuron 25

3 The Cytology of Neurons 27

James H. Schwartz

The Two Classes of Nerve Cells That Mediate the Stretch Reflex Differ in Morphology and Transmitter Substances 28

The Primary Afferent (Sensory) Neuron 29 The Motor Neuron 30

The Sensory Neuron and the Motor Neuron Differ in the Types of Receptor in Their Membranes 31

The Two Neurons Share Similar Na⁺ Channels 32

The Two Neurons Have an Identical Na–K Exchange Mechanism 32

The Axons of Both Sensory and Motor Neurons Are Ensheathed in Myelin 32

A Major Function of the Neuron's Cell Body Is the Synthesis of Macromolecules 34

An Overall View 35

Selected Readings 35

References 35

4 Synthesis and Distribution of Neuronal Protein 37

James H. Schwartz

Nuclear mRNA Gives Rise to Three Classes of Proteins 38

Cytosolic Proteins 38

Mitochondrial Proteins 38

Membrane Proteins and Secretory Products 39

Anterograde Axonal Transport Controls Intracellular Distribution of Membranes and Secretory Proteins 42

Retrograde Axonal Transport 43

Hypotheses of the Mechanisms of Fast Transport 44

Fast Transport and Neuroanatomical Tracing 44

The Cytoskeleton Is Responsible for the Shape of Neurons 46

Fibrillar Elements Constitute the Neuronal Cytoskeleton 47

An Overall View 48

Selected Readings 48

References 48

5 Resting Membrane Potential and Action Potential 49

John Koester

The Membrane Potential Is Proportional to the Separation of Charge across the Cell Membrane 49

The Resting Membrane Potential Is Generated by the Differential Distribution of Ions and Selective Permeability of the Membrane 52

In Glial Cells the Membrane Is Selectively Permeable to K^+ 52

In Nerve Cells the Membrane Is Permeable to Several Ionic Species 54 The Passive Fluxes of Na⁺ and K⁺ Are Balanced by Active Ion Pumping Driven by the Na–K Pump 55

Cl⁻ Is Often Passively Distributed 55

The Action Potential Is Generated by a Change in the Selective Permeability of the Membrane from K⁺ to Na⁺ 56

The Resting and Action Potentials Can Be Quantified by the Goldman Equation 56

An Overall View 57

Selected Readings 57

References 57

6 Nongated Channels and the Passive Membrane Properties of the Neuron 58

John Koester

A Channel Is Characterized by Its Selectivity for Ions and Its Gating Properties 59

Electromotive Force Is Generated across the Membrane 60

The Membrane Has Conductive Pathways 60

The Resting Membrane Potential Can Be Calculated from the Equivalent Circuit of the Membrane 61

To Calculate V_m We Need Consider Only the Nongated K^+ and Na^+ Channels 62

The Equation for V_m Can Be Written in a More General Form 63

The Na–K Pump Counteracts the Passive Fluxes of Na⁺ and K⁺ 64

The Membrane Has Capacitance 64

An Overall View 65

Selected Readings 65

7 Functional Consequences of Passive Membrane Properties of the Neuron 66

John Koester

Membrane Capacitance Slows the Time Course of Signal Conduction 66

Simplified Equivalent Circuit Model 66 Rate of Change of Membrane Potential 67 Membrane Time Constant 69

Membrane and Axoplasmic Resistance Affect the Efficiency of Signal Conduction 69

Axon Diameter Affects Current Threshold 72

Passive Membrane Properties and Axon Diameter Affect the Velocity of Action Potential Propagation 72

Selected Readings 74

8 Voltage-Gated Channels and the Generation of the Action Potential 75

John Koester

The Action Potential Is Generated by the Flow of Ions Through Voltage-Gated Na⁺ and K⁺ Channels 75

Voltage-Dependent Channels Can Be Studied by Use of the Voltage Clamp 76

The Voltage Clamp Employs Negative Feedback 77
Na⁺ and K⁺ Currents Move Through Two
Independent Channels 78

Na⁺ and K⁺ Conductances Are Calculated from Their Currents 79

The Action Potential Can Be Reconstructed from the Individual Electrical Properties of the Neuron 80

The Na⁺ Channel Can Be Characterized in Molecular Terms 81

Na⁺ Channels Are Sparsely Distributed but Are Highly Efficient Pathways for Na⁺ Flux 82

Voltage-Gated Channels Open in an All-or-None Fashion 82

Charge within the Membrane Is Rearranged When Voltage-Gated Na⁺ Channels Open 83

The Na⁺ Channel Selects for Na⁺ on the Basis of Size, Charge, and Energy of Hydration 83

The Major Subunit of the Na⁺ Channel Is a Large Glycoprotein 83

Membrane Channels Vary among Cell Types and among Different Regions of the Same Cell 85

An Overall View 86

Selected Readings 86

References 86

Part III Elementary Interactions between Neurons: Synaptic Transmission 87

9 Principles Underlying Electrical and Chemical Synaptic Transmission 89

Eric R. Kandel and Steven Siegelbaum Synaptic Transmission Can Be Electrical or Chemical 89 Synaptic Excitation of Skeletal Muscle by Motor Neurons Is Chemical and Is Now Understood in Molecular Terms 94

The Excitatory Synaptic Potential at the End-Plate Involves the Simultaneous Movement of Na⁺ and K⁺ 95

There Are Fundamental Differences between Chemically Gated and Voltage-Gated Channels 98

Studies of Single Chemically Gated Channels Reveal Information about Conformational Changes and the Molecular Mechanisms of Transmitter Action 99

Chemically Gated Channels Open in an All-or-None Fashion 99

Current Flow Depends on the Number of Open Channels and Transmitter Concentration 99

An Overall View 104

Postscript: The Synaptic Current Flow during the Excitatory Postsynaptic Potential Can Be Calculated on the Basis of a Simple Equivalent Circuit 104

Selected Readings 107

References 107

10 Chemically Gated Ion Channels at Central Synapses 108

Eric R. Kandel

Some Synaptic Actions Are Due to the Opening of Ion Channels That Are Closed at the Resting Potential 109

Experimental Background 109

Excitatory Postsynaptic Potentials on Motor Neurons 110

Current That Flows during the EPSP 110 Chemical Transmitters for Excitation 113 Inhibitory Postsynaptic Potentials on Motor Neurons 113

Current That Flows during the IPSP 113 Chemical Transmitters for Inhibition 115

Other Synaptic Actions Are Due to the Closing of Ion Channels That Are Open at the Resting Potential 115

Ionic Mechanisms for Signaling Have Features in Common 118

Integration of Signals Determines Firing of Action Potential 119

Selected Readings 119

11 Factors Controlling Transmitter Release 120

Eric R. Kandel

Certain Ion Species Are Necessary for Transmitter Release 120

Na⁺ Influx Is Not Necessary 121 K⁺ Efflux Is Not Necessary 122 Ca⁺⁺ Influx Is Necessary 123

Transmitter Is Released in Packets Called Quanta 124

Amount of Ca⁺⁺ Influx Affects the Number of Quanta Released 125

Amount of Transmitter Release Can Be Controlled by Altering Ca⁺⁺ Influx 127

Intrinsic Regulatory Processes (Membrane Potential and Activity) Can Alter Ca⁺⁺ Influx and Accumulation within the Terminal 127

Extrinsic Regulatory Processes (Presynaptic Inhibition and Facilitation) Can Also Alter Ca⁺⁺ Influx and Accumulation 127

An Overall View 130

Selected Readings 130

References 131

12 Morphology of Chemical Synapses and Patterns of Interconnection 132

Michael D. Gershon, James H. Schwartz, and Eric R. Kandel

Chemical Synapses Can Be Classified into Directed and Nondirected Types 132

The Nerve-Skeletal Muscle Synapse Is an Example of a Directed Synapse 133

The Presynaptic Terminal: Vesicles, Exocytosis, and the Active Zone 133

Active Zones 133
Freeze-Fracture Reveals the Panoramic Interior of
Synaptic Membranes 134
Recycling of Vesicle Membranes 136
There Is Now Electrical Evidence for Exocytosis and
for Membrane Retrieval 138

The Postsynaptic Component 138

The Autonomic Postganglionic Synapse Is an Example of a Nondirected Synapse 140

Synapses in the Central Nervous System Have Diverse Morphologies 140

Extent of Presynaptic Specialization 140
Types of Synaptic Vesicles 142
Geometry of the Zone of Apposition 142
Site of Contact 142

Inputs onto a Neuron Can Be Highly Segregated 142 Interconnections Give Rise to Local Processing of Information 144

An Overall View 146

Selected Readings 146

References 146

13 Chemical Messengers: Small Molecules and Peptides 148

James H. Schwartz

The Nature of Chemical Messengers 148

Small-Molecule Transmitter Substances 150

Acetylcholine 150

Biogenic Amine Transmitters 151 Amino Acid Transmitters 152

Neuroactive Peptides 153

Peptides and Small-Molecule Transmitters Differ in Several Presynaptic Features 155

Chemical Messengers Can Be Localized within Neurons 156

An Overall View 156

Selected Readings 157

References 158

14 Molecular Aspects of Postsynaptic Receptors 159

James H. Schwartz

Structure and Function of Receptors 160

There Are Two Classes of Receptors, One That Mediates Changes in Membrane Conductance and Another That Mediates Changes in the Metabolic Machinery of the Postsynaptic Cell 160

The Nicotinic Acetylcholine Receptor Is a Multimeric Intrinsic Membrane Protein 160

Partial Characterization of Other Ionophoric Receptors Indicates That They Also Are Large Membrane Protein Complexes 163

An Important Class of Receptors Mediates Changes in the Metabolic Machinery of the Postsynaptic Cell 164

Characterization of Receptors by Speed of Onset and by Duration of Action 166

An Overall View 167

Selected Readings 167

15 Molecular Steps in Synaptic Transmission 169

James H. Schwartz

Vesicles Store and Release Chemical Messengers 170

Storage in Vesicles Protects the Transmitter from Degradation 170

Subcellular Fractionation Allows Biochemical Study of Vesicles 170

Transmitter Is Actively Taken up into Vesicles 171

Vesicles Are Involved in Transmitter Release 171

Vesicle Membranes Differ with Type of Neuron 172

Transmitter Is Removed from the Synaptic Cleft to Terminate Synaptic Transmission 172

A Late Consequence of Transmitter Action: Control of Transmitter Biosynthesis in the Postsynaptic Cell 172

Catecholamine Biosynthesis 173 Acetylcholine Biosynthesis 174

An Overall View 174

Selected Readings 175

References 175

16 Diseases of Chemical Transmission at the Nerve–Muscle Synapse: Myasthenia Gravis 176

Lewis P. Rowland

Myasthenia Gravis Is Defined by Means of Clinical, Physiological, and Immunological Criteria 176

The Essential Characteristics of the Disease Were Defined between 1877 and 1970 177

Myasthenia Is an Autoimmune Disease 178

Physiological Studies Showed a Disorder of Neuromuscular Transmission 178 Immunological Studies Indicated That

Identification of Antibodies to ACh Receptor Initiated the Modern Period of Research 179

The Antibodies Make Animals Myasthenic 179
The Antibodies Lead to Symptoms in
Humans 180

Immunological Changes Cause the Physiological Abnormality 180

Antireceptor Antibodies Can Now Be Produced without Receptor 182

Important Problems Remain To Be Solved 182

Myasthenia Gravis May Be a Heterogeneous Syndrome 184

Current Therapy Is Effective but Not Ideal 184

Other Disorders of Neuromuscular Transmission: Presynaptic (Facilitating) Neuromuscular Block 184

An Overall View 185

Selected Readings 185

References 185

17 Reactions of Neurons to Injury 187

James P. Kelly

Cutting the Axon Causes Changes in the Neuron and in Glial Cells 188

Terminal Degeneration Leads to the Rapid Loss of the Presynaptic Terminal 188

Wallerian Degeneration Leads to the Slow Loss of the Distal Axon Segment 189

The Neuronal Cell Body Also Reacts to Axotomy 191

Central Axons Can Regenerate under Certain Favorable Circumstances 192

Glial Cells Absorb the Debris Caused by Injury 192

Transneuronal Degeneration Leads to Changes in Cells to Which the Damaged Neuron Connects 193

The Prognosis for Recovery from Damage to the Nerve Cells of the Brain May Soon Be Improved 194

An Overall View 194

Selected Readings 194

References 195

18 Diseases of the Motor Unit: The Motor Neuron, Peripheral Nerve, and Muscle 196

Lewis P. Rowland

The Motor Unit Is the Functional Element of the Motor System 196

Neurogenic and Myopathic Diseases Are Defined by the Component of the Motor Unit That Is Affected 197

Neurogenic and Myopathic Diseases Are Distinguished by Clinical and Laboratory Criteria 198

Clinical Evidence 198

Laboratory Evidence 199

Diseases of the Motor Neuron 202

Chronic and Acute Diseases 202 Pathophysiology 203

Diseases of Peripheral Nerves (Peripheral Neuropathies) 203

Positive and Negative Symptoms 204
Pathophysiology of Demyelinating
Neuropathies 204

Diseases of Muscle (Myopathies) Can Lead to Weakness or Myotonia 206

Inherited Myopathies 206 Acquired Myopathies 206

Degeneration of Muscle Fibers May Not Be the Only Cause of Weakness in Muscle Disease 206

Some Forms of Myotonia May Be Due to Decreased Numbers of Cl⁻ Leakage Channels 207

An Overall View 208

Selected Readings 208

Part IV Functional Anatomy of the Central Nervous System 209

Principles of the Functional and Anatomical Organization of the Nervous System 211

James P. Kelly

The Central Nervous System Has an Axial Organization 211

The Central Nervous System Is Subdivided into Six Main Regions 212

The Cerebral Cortex Is Further Subdivided into Four Lobes 214

The Central Nervous System Surrounds an Interconnected System of Four Cavities Called Ventricles 215

Even Simple Behavior Recruits the Activity of Three Major Sets of Functional Systems 216

The Motivational Systems Act Through Two Independent Motor Systems: the Autonomic and Somatic 218

Four Principles Govern the Organization of the Functional Systems of the Brain 220

Each Major System in the Brain Is Composed of Several Distinct Pathways in Parallel 220

Each Pathway Contains Synaptic Relays 220 Each Pathway Is Topographically Organized 220 Most Pathways Are Crossed 221

An Overall View 221

Selected Readings 221

References 221

20 Anatomical Basis of Sensory Perception and Motor Coordination 222

James P. Kelly

In the Somatic Sensory Systems, Axons Travel along the Spinal Cord to the Brain 223

Dorsal Root Ganglion Cells Provide Input to the Spinal Cord 223

The Spinal Cord Is Composed of Both Gray and White Matter 225

The Internal Structure of the Spinal Cord Varies at Different Cross-Sectional Levels 225

Axons of Dorsal Root Ganglion Cells Are Somatotopically Arranged 227

Axons of the Dorsal Root Ganglion Cells That Course in the Dorsal Columns Synapse in the Medulla 227

The Medial Lemniscus Ascends Through the Brain Stem 228

The Thalamus Is Composed of Six Functionally Distinct Nuclear Groups 231

Each Nuclear Group Belongs to One of Three Functional Classes 232

Specific Relay Nuclei 232 Association Nuclei 234 Nonspecific Nuclei 235

Relation of the Thalamic Nuclei to Cortical Function 235

All Other Major Sensory Systems Relay Through the Thalamus on the Way to the Cortex 235

Vision 235

Hearing and Balance 235

Taste 235

Smell 236

The Cerebral Cortex Consists of Layers of Neurons 236

The Two Main Varieties of Cortical Neurons Are Pyramidal and Stellate Cells 236

The Pattern of Layering Varies in Different Cortical Areas 237

The Descending Motor Systems Interconnect the Cortex, Basal Ganglia, and Thalamus 238

The Cerebellum Is Important in Regulating the Automatic Control of Movement 238

The Basal Ganglia Project to the Motor Cortex via the Thalamus 239 Various Inputs Converge on the Motor Cortex 240

The Corticospinal Tract Is a Direct Pathway from the Cortex to the Spinal Cord 241

The Motivational Systems Include Connections between the Limbic System and the Hypothalamus 243

An Overall View 243

Selected Readings 243

References 243

21 Development as a Guide to the Regional Anatomy of the Brain 244

John H. Martin

The Neural Tube and Its Vesicles Are the Embryonic Precursors of the Various Brain Regions 245

The Spinal Cord and Brain Stem Have a Similar Developmental Plan 248

The Cavities of the Brain Vesicles Are the Embryonic Precursors of the Ventricles 250

The Ventricular System Provides a Framework for Understanding the Regional Anatomy of the Diencephalon and Cerebral Hemispheres 252

The Caudate Nucleus Is C-Shaped and Parallels the Lateral Ventricles 255

The Major Components of the Limbic System Are Also C-Shaped 255

An Understanding of the C-Shaped Gyri Is Necessary for Interpreting Sections Through the Brain 258

An Overall View 258

Selected Readings 258

References 258

22 Imaging the Living Brain 259

John H. Martin and John C. M. Brust

Computerized Tomography (CT) Scanning Has Improved the Resolution of Images of Brain Structures 260

Positron Emission Tomography (PET) Scanning Yields a Dynamic Picture of Brain Function 267

Magnetic Resonance Imaging (MRI) Creates Brain Images without Using X-rays 269

MRI Images Can Provide an Atlas of Key Sections Through the Living Brain 269

Midsagittal Section Reveals C-Shaped Structures 269

Parasagittal Section Shows Shape of the Lateral Ventricle 271

The Corticospinal Tract Is Located on the Ventral Surface of the Medulla 271

The Dorsal Surface of the Pons Forms Part of the Floor of the Fourth Ventricle 271

The Superior and Inferior Colliculi Form the Dorsal Surface of the Midbrain 271

Horizontal Section Through the Cerebral Hemispheres Allows Both Cortical and Subcortical Structures to Be Visualized 271

The Caudate Nucleus Forms the Wall of the Anterior Horn and Body of the Lateral Ventricle 280

The Anterior Limb of the Internal Capsule Separates the Caudate Nucleus from the Globus Pallidus and Putamen 280

MRI Facilitates Clinical Diagnosis 280

An Overall View 282

Selected Readings 282

References 283

Part V Sensory Systems of the Brain: Sensation and Perception 285

23 Receptor Physiology and Submodality Coding in the Somatic Sensory System 287

John H. Martin

Sensory Systems Are Organized in a Hierarchical and Parallel Fashion 288

Sensory Psychophysical Studies Correlate Behavior with the Physiology of Neurons 288

Sensory Thresholds for Perception and for Afferent Fibers May Be Equal 289

Stimulus Intensity Evaluation Is Correlated with the Discharge Rate of Afferent Fibers 290

Spatial Discrimination Is Explained by Receptor Innervation Density 290

Stimulus Features Are Electrically Encoded by Receptors 291

Sensory Transduction Is the First Step in the Extraction of Stimulus Features 291

Stimulus Intensity Is Encoded by Frequency and Population Codes 292

Rapid Receptor Adaptation Is a Form of Feature Extraction 292

Different Classes of Afferent Fibers Conduct Action Potentials at Different Rates 293

Different Classes of Somatic Receptors Are Sensitive to Different Stimuli 294

Stimulus Quality Is Encoded by a Labeled Line Code 294

Pain Is Mediated by Nociceptors 294

Thermal Sensation Is Mediated by Cold and Warm Receptors 295

Tactile Sensations Are Mediated by Slowly and Rapidly Adapting Mechanoreceptors 296

Proprioception Is Mediated by Muscle Afferent Fibers 297

An Overall View 299

Selected Readings 300

References 300

24 Anatomical Substrates for Somatic Sensation 301

John H. Martin

The Area of Skin Innervated by a Single Dorsal Root Is Called a Dermatome 301

The Spinal Cord Is Organized into Gray and White Matter 304

Spinal Gray Matter Contains Nerve Cell Bodies 304

Spinal White Matter Contains Myelinated Axons 306

Dorsal Root Fibers Run in the White Matter and Arborize in the Gray Matter 306

Two Major Ascending Systems Convey Somatic Sensory Information to the Cerebral Cortex 307

The Dorsal Column–Medial Lemniscal System Mediates Tactile Sense and Limb Proprioception 307

The Anterolateral System Mediates Pain and Temperature Sense 311

The Primary Somatic Sensory Cortex Is Divided into Four Parts 312

Pyramidal Cells Are the Output Cells of the Cerebral Cortex 313

An Overall View 315

Selected Readings 315

References 315

25 Central Representation of Touch 316

Eric R. Kandel

Sensory Systems Transform Information at Specific Relay Points 317

The Body Surface Is Mapped onto the Brain 319

Functional Analyses Localized Somatic Sensations to Specific Regions of Cortex 319

Modern Electrophysiological Studies Correlated Body Areas and Cortical Areas 320

Why Is the Map So Distorted? 322

Each Central Neuron Has a Specific Receptive Field 323

Sizes of Receptive Fields Vary 324
Receptive Fields Have a Fine Structure 325
Lateral Inhibition Can Aid in Two-Point
Discrimination 325

Modality-Specific Labeled Communication Lines Are Organized into Columns 326

Modality-Specific Columns Are Grouped into Domains 326

Dynamic Properties of Receptors Are Matched to Those of Central Neurons 327

Feature Detection: Some Central Nerve Cells Have Complex Properties 328

An Overall View 329

Selected Readings 330

References 330

26 Central Representations of Pain and Analgesia 331

Dennis D. Kelly

Pain Is Transmitted by Specific Neural Pathways 332

Receptors for Pain May Be Activated by Mechanical, Thermal, or Chemical Stimuli 332

Primary Pain Afferents Terminate in the Dorsal Horn of the Spinal Cord 332

At Least Two Populations of Neurons in the Spinal Cord Transmit Information about Pain 333

Spinal Pain Projections to the Brain Stem Are Widespread 334

Thalamic Relays Preserve the Duality of Ascending Pain Projections 334

Central Pain Syndrome: Surgery Intended to Relieve Existing Pain May Produce New Pain 335

Pain Is Also Inhibited by Select Neural Pathways: The Mechanisms of Analgesia 336

Direct Electrical Stimulation of the Brain Produces Analgesia 336

Stimulation-Produced Analgesia Is Related to Opiate Analgesia 337

Opiate Receptors Are Distributed Throughout the Nervous System 337

There Are Three Branches of Opioid Peptides 337

Different Classes of Opiate Receptors Mediate Different Actions 340

Spinal Neurons That Transmit Pain Are Subject to Descending Control 340

Behavioral Stress Can Induce Analgesia via Both Opioid and Non-Opioid Mechanisms 340

An Overall View 342

Selected Readings 342

References 342

2.7 The Retina and Phototransduction 344

Craig H. Bailey and Peter Gouras

There Are Two Types of Photoreceptors: Rods and Cones 344

Rods and Cones Differ in Structure and Function 346

Excitation of Rod Cells Involves the Breakdown of Rhodopsin 347

Excitation of Cone Cells Involves the Breakdown of Cone Opsin 347

Light Is Transduced into Electrical Signals by a Second-Messenger System 347

Visual Information Is Processed by Five Major Classes of Neurons in the Retina 349

There Are Distinct On-Center and Off-Center Pathways 350

The On-Center and Off-Center Pathways Use Both Electrical and Chemical Synapses 351

There Are Parallel Systems of Ganglion Cells 353

Horizontal Cells Are Local Interneurons in the Outer Plexiform Layer That Contribute to Center–Surround Antagonism 353

Amacrine Cells Are Local Interneurons in the Inner Plexiform Layer That Mediate Antagonistic Interactions 353 An Overall View 354

Selected Readings 355

References 355

28 Anatomy of the Central Visual Pathways 356

James P. Kelly

The Visual Field Is the Projection of the Visual World on the Retina 356

The Lateral Geniculate Nucleus Is Composed of Six Cellular Layers 359

The Superior Colliculus and Pretectum Are Visual Reflex Centers 361

Superior Colliculus 361 Pretectal Region 361

Lesions in the Visual Pathway Cause Predictable Changes in Sight 362

The Primary Visual Cortex Has a Characteristic Cellular Architecture 363

An Overall View 365

Selected Readings 365

References 365

29 Processing of Form and Movement in the Visual System 366

Eric R. Kandel

The Superior Colliculus Participates in Visually Guided Saccadic Eye Movements 367

The Retina Is Mapped in the Lateral Geniculate Nucleus and Visual Cortex 367

Receptive Fields of Neurons in Various Parts of the Visual System Have Different Properties 370

The Ganglion Cells of the Retina Project Information to the Lateral Geniculate Nucleus by Means of Several Independent Channels 372

The Lateral Geniculate Nucleus Enhances the Antagonisms between the Center and the Surround 372

The Primary Visual Cortex Transforms the Visual Message in Various Ways 373

The Primary Visual Cortex Is Organized into Columns 376

Simple and Complex Cells May Contribute to Positional Invariance in Perception 378

Cells in the Higher Order Visual Cortices Elaborate the Visual Message Further 378

Some Feature Abstraction Could Be Accomplished by Progressive Convergence 381

Visual Perception Also Involves Parallel Processing 381

An Overall View 382

Selected Readings 382

References 383

Color Vision

Peter Gouras

Cones Have Three Different Pigments 385

Good Color Discrimination Requires Three Photoreceptor Systems 386

Color Experience Is Composed of Impressions of Hue, Saturation, and Brightness 386

Color Vision Is Best Explained by Combining **Trichromacy with Color Opponent** Interactions 388

Color Is Coded by Single-Opponent and Double-Opponent Cells 389

Many Double-Opponent Cells Have Receptive Fields That Are Not Oriented 392

Is Color Analyzed Independently of Form? 394

Color Blindness Can Be Caused by Genetic Defects in the Photoreceptor or by Retinal Disease 394

An Overall View 394

Selected Readings 395

References 395

Auditory System 396

James P. Kelly

The Conductive Apparatus Transforms Acoustic Waves into Mechanical Vibrations 397

The Cochlea Transduces Changes in Fluid Pressure into Neural Activity 399

Different Regions of the Cochlea Are Selectively Responsive to Different Frequencies of Sound 400

Individual Hair Cells at Different Points along the Basilar Membrane Are Tuned Electrically as well as Mechanically 402

The Cochlea Is Innervated by Fibers of the Eighth Nerve 402

The Central Auditory Pathways Are Organized Tonotopically 402

Each Cochlea Is Bilaterally Represented in the Brain 406

An Overall View 408

Selected Readings 408

References 408

32 The Chemical Senses: Taste and Smell 409

Vincent F. Castellucci

Taste Receptors in the Tongue Are Specialized for Certain Taste Qualities 410

Four Basic Taste Qualities Can Be Delineated 410

Transduction Requires the Binding of Molecules to Specific Receptors on Taste Cells 410

Taste Receptor Cells Contained in Papillae Are Embedded in Taste Buds 411

The Central Pathway of the Taste System Involves Distinct Representations in the Thalamus and Cortex 412

Taste Sensation Is Coded by Labeled Lines and Patterns of Activity across Labeled Lines 413

Both Inborn and Learned Taste Preferences Are Important for Behavior 416

Certain Aspects of Taste Perception Are Genetically Determined 417

Taste-Aversion Learning Is Demonstrated by the "Sauce Béarnaise" Phenomenon 417

Olfactory Receptors Have Receptor Sites Specialized for Certain Odors 417

There Are at Least Seven Primary Odors, Probably More 417

Olfactory Receptors Lie within the Olfactory Epithelium 418

Neuronal Coding for Olfaction Involves a Novel Use of Neural Space 420

The Olfactory System Projects to the Paleocortex before Relaying to the Neocortex via the Thalamus 423

Abnormalities of Olfaction Vary Greatly in Degree of Sensory Loss 424

An Overall View 424

Selected Readings 425

XIX

Part VI Motor Systems of the Brain: Reflex and Voluntary Control of Movement 427

33 Introduction to the Motor Systems 429

Claude Ghez

Motor Commands Are Tailored to the Physical Constraints of the Muscles, Bones, and Joints 430

The Four Major Components of the Motor Systems Are Hierarchically Organized 431

The Spinal Cord Is the First Level in the Motor Hierarchy 431

The Brain Stem Is the Second Level in the Motor Hierarchy 433

The Motor and Premotor Cortices Are the Third and Fourth Levels in the Motor Hierarchy 433

There Are Three Important Aspects of the Hierarchical Organization 433

The Cerebellum and the Basal Ganglia Control the Components of the Motor Hierarchy 433

The Various Motor Control Levels Are Also Organized in Parallel 433

In the Spinal Cord Motor Neurons Are Subject to Afferent Input and Descending Control 435

Afferent Fibers and Motor Neurons 435 Interneurons and Propriospinal Neurons 435

Two Groups of Descending Pathways from the Brain Stem Control Different Muscle Groups 436

Ventromedial Pathways 436 Dorsolateral Pathways 436

The Motor Cortex Exercises Descending Motor Control via Corticospinal and Corticobulbar Tracts 437

Origin, Course, and Terminations of the Corticospinal and Corticobulbar Tracts 438

Cortical Control of Movement Is Achieved Only Late in Phylogeny 438

The Motor Cortex Is Itself Influenced by Both Cortical and Subcortical Inputs 440

The Several Levels of Motor Neuron Control Have Functional Consequences 440

Lesions of the Corticospinal System Cause Characteristic Symptoms 440

Positive and Negative Signs 440 Upper and Lower Motor Neuron Lesions 441

Selected Readings 442

References 442

34 Muscles and Muscle Receptors 443

Thomas J. Carew and Claude Ghez

Skeletal Muscle Fibers and Motor Neurons Are Functionally Specialized 443

The Nervous System Can Grade the Force of Muscle Contraction in Two Ways 444

Recruitment: The Size Principle 444
Rate Coding 445

Skeletal Muscles Filter the Information Contained in the Neural Spike Trains That Control Them 446

Muscles Have Springlike Properties 447

Alterations in Set Points 447

Equilibrium Points and the Control of Limb
Position 448

Muscles Have Specialized Receptors That Convey Information to the Central Nervous System 451

Muscle Spindles 451 Golgi Tendon Organs 452 Muscle Afferents 452

Muscle Stretch Receptors Convey Information about Muscle Length, Tension, and Velocity of Stretch 452

The Central Nervous System Can Directly Control the Sensitivity of Muscle Spindles 453

Dynamic and Static Gamma Motor Neurons 454 Functional Role of the Gamma System 454 Skeletofusimotor Innervation 454

An Overall View 455

Selected Readings 455

References 456

35 The Control of Reflex Action 457

Thomas J. Carew

Ia Afferent Fibers Contribute to the Stretch Reflex 458

Basic Features of the Stretch Reflex 458 Central Connections of the Ia Afferent Fibers 458

Ib Afferent Fibers Contribute to the Inverse Myotatic Reflex 461

Group II Afferent Fibers Contribute to Stretch and Flexion Reflexes 462

Direct Actions on Homonymous Motor Neurons: Stretch Reflex 462

Polysynaptic Pathways: Flexion Reflexes 462

Reflexes of Muscle Origin Are Functionally Significant 462

The Gamma Loop and the Length-Servo Hypothesis 462

Reflexes Mediated by Muscle May Regulate the Stiffness of Muscle 465

Descending Control of Muscle Set Point 465

Afferent Fibers from Cutaneous and Deep Receptors Mediate a Reflex Consisting of Ipsilateral Flexion and Contralateral Extension 466

Reflex Activity Is Subject to Supraspinal and Intraspinal Influences 467

Selected Readings 468

References 468

36 Clinical Syndromes of the Spinal Cord 469

Lewis P. Rowland

Clinically Important Anatomy 469

Somatotopic Organization of the Spinothalamic Tract Is an Aid to Diagnosis 470

Function Is Lost below a Transverse Spinal Lesion 471

Motor Level 471 Sensory Level 471

It Is Important to Distinguish Intra-axial from Extra-axial Disease 474

Lesions of the Spinal Cord Often Give Rise to Characteristic Syndromes 474

Complete Transection 474

Partial Transection 475

Hemisection (Brown-Séquard Syndrome) 475

Multiple Sclerosis 475

Syringomyelia 475

Subacute Combined Degeneration 476

Friedreich's Ataxia 476

An Overall View 476

Selected Readings 477

References 477

37 Posture and Locomotion 478

Thomas J. Carew

Descending Influences Play a Major Role in Postural Control 478

Decerebrate Rigidity Provides a Model for Studying Tonic Modulation 478 Reticulospinal Influences 479
Vestibulospinal Influences 480
Cerebellar Influences 480
Applicability of the Model to Clinical Syndromes of Spasticity and Rigidity 480
Clinical Syndromes of Spasticity and Rigidity 481

Descending Influences and Reflex Mechanisms Interact in Controlling Human Posture 481

Neural Control of Locomotion Involves Translation of a Tonic Descending Message into Rhythmic Locomotor Output 482

The Central Program Controlling Locomotion Is Located in the Spinal Cord 483

The Central Program Is Modulated by Descending Influences 484

Ascending Information from the Spinal Cord Is Sent to Higher Brain Centers during Locomotion 484

Afferent Information Is Crucial for Locomotion 484

An Overall View 485

Selected Readings 485

References 486

38 Voluntary Movement 487

Claude Ghez

The Motor Cortex Is Topographically Organized 488

The Corticospinal Tract Originates from Pyramidal Neurons in the Cortex 489

Corticospinal Neurons of the Motor Cortex Play a Preeminent Role in Controlling Distal Muscles 489

Corticospinal Neurons of the Motor Cortex Influence Motor Neurons Through Direct and Indirect Connections 489

Neurons of the Motor Cortex, Which Become Active before the Onset of Voluntary Movement, Encode the Force to Be Exerted 490

Subgroups of Neurons in the Motor Cortex Encode Different Aspects of the Force Trajectory Required for Movement 491

Neurons in the Motor Cortex Are Informed of the Consequences of Movement 492

Not All Movements Are under the Control of the Motor Cortex 493

Voluntary Movement Requires a Plan of Action: The Central Motor Program 494

The Supplementary Motor Area Is Important in Programming Motor Sequences 496

The Premotor Cortex Is Important in Arm Projection and Sensory Guidance 498 The Posterior Parietal Cortex Plays a Critical Role in Providing the Spatial Information for Targeted Movements 499

An Overall View 499

Selected Readings 500

References 500

39 The Cerebellum 502

Claude Ghez and Stanley Fahn

The Regional Organization of the Cerebellum Reflects Its Functions 503

The Cerebellum Is Divided into Three Lobes by Two Deep Transverse Fissures 503

Two Longitudinal Furrows Divide the Cerebellum into Medial and Lateral Regions 505

The Cellular Organization of the Cerebellum Is Highly Regular 506

The Cerebellar Cortex Is Divided into Distinct Molecular, Purkinje, and Granular Layers 506

Input Reaches the Cerebellum via Two Excitatory Fiber Systems: Mossy and Climbing Fibers 507

Inhibitory Side Loops Modulate Purkinje Cell Activity 508

Aminergic Systems Project from Brain Stem Nuclei 509

The Three Functional Divisions of the Cerebellum Have Different Connections and Different Phylogenetic Origins 509

The Vestibulocerebellum Controls Balance and Eye Movements 510

The Spinocerebellum Contains Topographical Maps of the Body That Receive Sensory Information from the Spinal Cord 511

Somatic Sensory Information Reaches the Cerebellum Through Direct and Indirect Mossy Fiber Pathways 512

Efferent Spinocerebellar Projections Control the Medial and Lateral Descending Systems 513

The Spinocerebellum Uses Sensory Feedback to Control Muscle Tone and the Execution of Movement 516

The Cerebrocerebellum Coordinates the Planning of Limb Movements 516

Input from the Cerebral Cortex Is Conveyed to the Cerebellum Through the Pontine Nuclei 516

The Output of the Cerebrocerebellum Is Mediated by the Dentate Nuclei, Which Control Motor and Premotor Areas of the Cortex 518 Lesions of the Cerebrocerebellum Produce Delays in Movement Initiation and in Coordination of Limb Movement 518

Does the Cerebellum Have a Role in Motor Learning? 518

Cerebellar Diseases Can Be Localized by Their Clinical Features 520

Disease of the Vestibulocerebellum Causes Disturbances of Equilibrium 521

Disease of the Spinocerebellum Usually Affects the Anterior Lobe and Causes Disorders of Stance and Gait 521

Diseases of the Cerebrocerebellum Cause Disorders of Speech and Coordinated Movement 521

Selected Readings 521

References 521

40 Motor Functions of the Basal Ganglia and Diseases of Transmitter Metabolism 523

Lucien Côté and Michael D. Crutcher

Nuclei of the Basal Ganglia 524

Basal Ganglia Receive Input from the Cortex, Thalamus, and Substantia Nigra and Project Mainly Back to the Cortex via the Thalamus 524

Afferent Connections 524
Internuclear Connections 525
Efferent Connections 525

Modular and Somatotopic Organization 528

Basal Ganglia May Contribute to Cognition 528

Diseases of the Basal Ganglia Cause Characteristic Symptoms 528

Parkinson's Disease 529

Huntington's Disease and the Dopaminergic— Cholinergic—GABA-ergic Loop 531

The Genetic Marker for Huntington's Disease 532

Tardive Dyskinesia 534

Experimental Manipulation of Transmitter Systems 534

An Overall View 534

Selected Readings 534

Part VII The Brain Stem and Reticular Core: Integration of Sensory and Motor Systems 537

41 Cranial Nerve Nuclei, the Reticular Formation, and Biogenic Amine-Containing Neurons 539

James P. Kelly

Most Cranial Nerves Originate in the Brain Stem and Innervate the Head, Neck, and Special Sense Organs 540

Cranial Nerves Contain Visceral and Somatic Afferent and Efferent Fibers 544

There Are Three Types of Motor Neurons in the Brain Stem: Somatic, Special Visceral, and General Visceral 545

There Are Four Types of Afferent Neurons: General Somatic, Special Somatic, General Visceral, and Special Visceral 546

Cranial Nerve Nuclei Are Grouped into Seven Columns 546

The Somatic Motor Column Contains Motor Neurons That Innervate the Extraocular Muscles and the Tongue 548

The Special Visceral Motor Column Contains Motor Neurons That Innervate the Branchiomeric Muscles of the Larynx, Pharynx, Face, and Jaw 549

The General Visceral Motor Column Contains Preganglionic Parasympathetic Neurons 550

The General and Special Visceral Afferent Columns Contain Neurons That Provide the Sensory Innervation for the Taste Buds, Larynx, Pharynx, Blood Vessels, and Viscera 552

The Special Somatic Afferent Column Contains Neurons That Innervate the Cochlear and the Vestibular Sensory Organs 552

The General Somatic Afferent Column Contains Neurons That Innervate the Face and the Mucous Membranes of the Mouth 552

Principles of Organization Governing the Cranial Nerves 552

Specific Sensory and Motor Tracts Traverse the Brain Stem 553

Cranial Nerve Fiber Types Mix in the Periphery 553

Reticular Neurons Form Widespread Networks 556

Some Reticular Neurons Are Grouped According to Their Chemical Messengers 558

Noradrenergic System 558 Dopaminergic System 558 Serotonergic System 558

Reticular Neurons Have Several Functions 560

Selected Readings 560

References 560

42 Trigeminal System 562

James P. Kelly

The Fifth Nerve Has Three Major Peripheral Branches 562

All Three Major Branches Contain Sensory Fibers 563

Autonomic Fibers Run with Branches of the Fifth Nerve 563

Fifth Nerve Fibers Ascend to the Main Sensory Nucleus and Descend to the Spinal Nucleus 564

The Mesencephalic Nucleus of the Fifth Nerve Mediates Proprioception from the Muscles of the Jaws 564

The Spinal Tract and Nucleus of the Fifth Nerve Mediate Pain and Temperature Sensation 565 Caudal Nucleus 566 Interpolar Nucleus 566 Oral Nucleus 567

The Main Sensory Nucleus Mediates Touch Sensation from the Face 567

Ascending Information from the Trigeminal Complex Reaches the Cortex via the Thalamus 567

Whiskers in Rodents Have a Unique Functional Representation in the Cerebral Cortex 569

An Overall View 570

Selected Readings 570

References 570

43 Oculomotor System 571

Peter Gouras

Three Pairs of Muscles Move the Eyeball along Three Axes 571

Five Neural Control Systems Keep the Fovea on Target 573

Saccadic Eye Movement System 574 Smooth Pursuit Movement System 575 Vestibulo-Oculomotor Reflex System 576 Optokinetic Movement System 577 Vergence Movement System 578

Misalignment 578

Oculomotor Neurons Fire at Very High Rates 578

Premotor Centers Act Directly and Indirectly on Oculomotor Neurons 579

The Vestibular Nuclei Are Important for Many Types of Eye Movement 579

Neurons in the Pontine Gaze Center Are Heavily Involved in Programmed Eye Movements Such as Horizontal Saccades 579

Burst Cells 579
Tonic Cells 579
Burst-Tonic Cells 580
Pause Cells 580
Interconnection of Cell Types 580

The Superior Colliculus Coordinates Visual Input with Eye Movements 581

Two Cortical Eye Fields Act on the Premotor Cells 582

Frontal Eye Fields 582 Occipital Eye Fields 583

An Overall View 583

Selected Readings 583

References 583

44 Vestibular System 584

James P. Kelly

The Vestibular Labyrinth Is Part of the Membranous Labyrinth 585

Endolymph Fills the Vestibular Labyrinth and Perilymph Surrounds It 586

Specialized Regions of the Vestibular Labyrinth Contain Receptors 586

The Arrangement of Vestibular Hair Cells Is Integral to Their Function as Receptors 587

Hair Cells Are Polarized Structurally and Functionally 587

Semicircular Ducts Work in Pairs 588

Hair Cells in the Utricle Are Polarized toward the Striola 589

The Central Connections of the Vestibular Labyrinth Reflect Its Dynamic and Static Functions 591

The Central Axons of the Neurons of the Vestibular Ganglion Run in the Eighth Cranial Nerve to the Brain Stem 591

Each Nucleus of the Vestibular Nuclear Complex Has Distinctive Connections 591 Lateral Vestibular Nucleus 592 Medial and Superior Vestibular Nuclei 593 Inferior Vestibular Nucleus 594

Movements of the Head and Neck Can Produce Tonic Neck and Labyrinthine Reflexes 594

An Overall View 594

Selected Readings 596

References 596

45 Clinical Syndromes of the Brain Stem 597

Lewis P. Rowland

Familiarity with Anatomy Is Necessary to Locate Lesions in the Brain Stem 598

Extra-axial Lesions Are Illustrated by Tumors of the Cerebellopontine Angle 598

Intra-axial Lesions Often Cause Gaze Palsies and Internuclear Ophthalmoplegia 599

Gaze Palsies 599

Syndrome of the Medial Longitudinal Fasciculus: Internuclear Ophthalmoplegia 600

Vascular Lesions of the Brain Stem and Midbrain May Cause Characteristic Syndromes 601

Medial Syndromes of the Medulla and Pons 604 Lateral Syndromes of the Medulla and Pons 604 Midbrain Syndromes 606 Coma and the Locked-in Syndrome 606

An Overall View 606

Selected Readings 606

References 607

Part VIII

Hypothalamus, Limbic System, and Cerebral Cortex: Homeostasis and Arousal 609

46 Hypothalamus and Limbic System I: Peptidergic Neurons, Homeostasis, and Emotional Behavior 611

Irving Kupfermann

The Anatomy of the Limbic System and Hypothalamus Is Related to Their Functions 612

Higher Cortical Centers Communicate with the Hypothalamus via the Limbic System 612 The Structure of the Hypothalamus Reflects Its Diverse Functions 614

The Hypothalamus Contains Various Classes of Peptidergic Neuroendocrine Cells 616

The Hypothalamus Controls Endocrine Function by Means of Peptidergic Neurons 616

Magnocellular Neurons Release Oxytocin and Vasopressin 618

Parvicellular Neurons Release Inhibiting and Releasing Hormones 619

Hypothalamic Neurons Participate in Four Classes of Reflexes 620

Milk Ejection and Uterine Contraction Are Regulated by a Neural Input and a Humoral Output 620

Urine Flow Is Regulated by a Humoral Input and a Humoral Output 620

The Brain Itself Is a Target for Hormone Action 621

Feedback Loops Involve a Humoral Input and a Humoral Output 621

Central Effects of Hormones on Behavior Involve a Humoral Input and a Neural Output 622

Hormones May Be Important for Learning 622

The Hypothalamus Helps Regulate the Autonomic Nervous System 623

The Hypothalamus Is Involved in Emotional Behavior 623

An Overall View 624

Selected Readings 625

References 625

47 Hypothalamus and Limbic System II: Motivation 626

Irving Kupfermann

Motivational or Drive States Are Thought to Intervene between Stimuli and Complex Responses 626

Homeostatic Processes Can Be Analyzed in Terms of Control Systems 627

Temperature Is Regulated in Response to Peripheral and Central Input 628

Feeding Behavior Is Regulated by a Variety of Signals 629

Set Point 629

Controlling Elements 630

Hypothalamic Lesions and Fibers of Passage 630 Sensory and Motor Deficits 630 Alterations of Set Point 631 Hormonal Effects 631 Nonhypothalamic Elements 631 Signals Regulating Feeding 631

Thirst Is Regulated by Tissue Osmolality and Vascular Volume 632

Motivated Behaviors Can Be Regulated by Factors Other Than Tissue Needs 633

Ecological Constraints 633 Anticipatory Mechanisms 633 Hedonic Factors 634

Intracranial Self-Stimulation Can Reinforce Behavior 634

An Overall View 634

Selected Readings 634

References 634

48 Cortical Neurons, the EEG, and the Mechanisms of Epilepsy 636

John H. Martin

Cortical Neurons Have Properties That Are Specially Suited to Their Function 637

The Cerebral Cortex Contains Two Major Classes of Neurons 637

Powerful Inhibitory Synapses Are Located Close to the Cell Body 638

Pyramidal Cells Are Capable of High-Frequency Firing 638

Dendritic Trigger Zones Boost Remote Input 639

Glial Cells May Buffer the Extracellular K⁺ Concentration 639

The Collective Behavior of Neurons Can Be Studied Noninvasively in Humans by Using Macroelectrodes 640

Electroencephalograms Reflect Summated Postsynaptic Potentials in Cortical Neurons 643

Stimulation of Sensory Pathways Can Be Recorded as Evoked Potentials 644

Epilepsy Is a Disease of Cerebral Neuron Dysfunction 645

Partial and Generalized Seizures Have Different Clinical and EEG Features 645

Epileptic Seizures Can Be Produced in Experimental Animals 646

An Overall View 646

Selected Readings 647

49 Sleep and Dreaming 648

Dennis D. Kelly

Sleep Is an Active and Rhythmic Neural Process 649

Normal Sleep Cycles Through Identifiable Stages within a Single Sleep Period 650

Slow-Wave Sleep without Rapid Eye Movements 650

Sleep with Rapid Eye Movements 650 Architecture of a Night's Sleep 651

The Daily Sleep Requirement Varies with Age 651

The Phylogeny of Sleep May Provide a Clue to the Function of REM Sleep 652

The Psychophysiology of Dream Content 652

Intensity Gradient of Dreams within a Night's Sleep 652

The Content of Dreams 653 Erection Cycles during Sleep 653

Passage of Time in Dreams 653 REM Versus Non-REM Mentation 653

Selective Deprivation of REM Sleep Results in a REM Rebound 654

Several Neural Mechanisms May Be Responsible for the Sleep-Wake Cycle 654

Early Concept of the Reticular Activating System 654

Evidence for a Sleep-Inducing Area in the Brain Stem 655

Raphe Nuclei 655

Nucleus of the Solitary Tract 655

The Suprachiasmatic Nucleus and the Biological Clock for the Sleep–Wake Cycle 655

Distinct Regions of the Brain Stem May Also Trigger REM Sleep 656

A Perspective on Neurotransmitters and Sleep 656

Selected Readings 657

References 657

50 Disorders of Sleep and Consciousness 659

Dennis D. Kelly

Insomnia Is a Symptom, Not a Unitary Disease 659

Two Normal Sources of Insomnia Are Disrupted Rhythms and Aging 660

Psychopathology Is Often Mirrored in Disturbed Sleep 660 Medication May Initially Help, Then Harm Sleep 660

Nocturnal Enuresis Is Not Caused by Dreaming 662

Somnambulism Is a Non-REM Phenomenon 662

Night Terrors, Nightmares, and Terrifying Dreams Occur in Different Stages of Sleep 662

Sleep Apnea May Result in Hyposomnia or Hypersomnia 664

Narcolepsy:

Irresistible Sleep Attacks Are Accompanied by Several REM-Related Symptoms 664

Loss of Consciousness: Coma Is Not Deep Sleep 666

Transient Losses of Consciousness Can Result from Decreased Cerebral Blood Flow 666

Coma Has Many Causes 666

Infratentorial Lesions 667 Supratentorial Lesions 668 Metabolic Coma 669

The Determination of Cerebral Death Constitutes a Medical, Legal, and Social Decision 669

Selected Readings 670

References 670

Part IX

Localization of Higher Functions and the Disorders of Language, Thought, and Affect 671

Hemispheric Asymmetries and the Cortical Localization of Higher Cognitive and Affective Functions 673

Irving Kupfermann

The Association Areas Are Involved in Higher Functions 675

Intracortical Association Pathways Are Hierarchically Organized 676

The Association Areas of the Prefrontal Region Are Thought to Be Involved in Cognitive Behavior and Motor Planning 677

Lesions of the Principal Sulcus Interfere with Specific Motor Tasks 677

Lesions of the Inferior Prefrontal Convexity Interfere with Appropriate Motor Responses 679

The Association Areas of the Limbic Cortex Mediate Affective Aspects of Emotional Behavior as well as Memory 679 The Orbitofrontal Portion of the Limbic Association Cortex Is Concerned with Emotional Behavior 679

The Temporal Lobe Portion of the Limbic Association Cortex Is Thought to Be Concerned with Memory Functions 680

The Association Areas of the Parietal Lobe Are Involved in Higher Sensory Functions and Language 680

The Two Hemispheres Are Not Fully Symmetrical and Differ in Their Capabilities 681

Split-Brain Experiments Reveal Important Asymmetries and Show That Consciousness and Self-Awareness Are Not Unitary 683

Why Is Function Lateralized? 685

An Overall View 686

Selected Readings 686

References 686

52 Natural Language, Disorders of Language, and Other Localizable Disorders of Cognitive Functioning 688

Richard Mayeux and Eric R. Kandel

All Human Languages Share Four Distinctive Features 689

Animal Models of Human Language Have Been Largely Unsatisfactory 690

What Is the Origin of Human Language? 691

Is the Capability for Human Language an Innate Cognitive Skill or Is It Learned? 691

Aphasias Are Disorders of Human Language That Also Interfere with Other Cognitive Processing 693

The Aphasias Can Be Understood on the Basis of the Wernicke–Geschwind Model for Language 693

Six Clinical Syndromes of Aphasia Can Be Distinguished and Related to Different Anatomical Loci 694

Wernicke's Aphasia 694
Broca's Aphasia 694
Conduction Aphasia 695
Anomic Aphasia 695
Global Aphasia 695
Transcortical Aphasias 695

Aprosodias Are Disorders of the Melodic Intonation of Language and Its Perception 696

Some Disorders of Reading and Writing Can Also Be Accounted for by the Wernicke-Geschwind Model 696

Alexias and Agraphias Are Acquired Disorders of Reading and Writing 696

Word Blindness Accompanied by Writing Impairment: Alexia with Agraphia 696

Pure Word Blindness: Alexia without Agraphia 696 Phonetic Symbols and Ideographs Are Localized to Different Regions of the Cerebral Cortex 697

Dyslexia and Hyperlexia Are Developmental Disorders of Reading 697

Apraxia Is a Disorder in the Execution of Gesture and Learned Movements 698

An Overall View 699

Postscript: A Clinical Exercise in Distinguishing the Aphasias 700

Is Spontaneous Speech Fluent or Nonfluent? 700
Can the Patient Repeat Words or Phrases? 700
How Well Can Language Be Comprehended? 701
Is There Difficulty in Naming? 701
Are There Associated Disturbances of Reading

Are There Associated Disturbances of Reading and Writing? 702

Are There Other Associated Signs? 702

Selected Readings 702

References 702

53 Disorders of Thought: The Schizophrenic Syndromes 704

Edward J. Sachar

The Diagnosis of Mental Illnesses Must Meet Certain Criteria 705

Schizophrenia Can Now Be More Accurately Diagnosed 705

There Is an Important Genetic Component to Schizophrenia 706

Specific Drugs Are Effective in the Treatment of Schizophrenia 707

Antischizophrenic Drugs Affect Dopaminergic Transmission 708

A Dopamine Hypothesis of Schizophrenia Has Been Proposed 712

The Neuropathology of Schizophrenia Might Be Located in the Mesolimbic Dopaminergic System 713

There Are Important Weaknesses in the Dopamine Hypothesis 714

Negative Symptoms of Schizophrenia May Have Other Causes 715 Are There Two Distinct but Overlapping Forms of Schizophrenia? 715

Selected Readings 715

References 715

54 Disorders of Feeling: Affective Diseases 717

Edward J. Sachar

The Clinical Features of Major Depressive Disorders Suggest a Defect in the Hypothalamus 718

Unipolar (Recurrent Depressive) Disorders 718 Bipolar (Manic Depressive) Disorders 718

There Is a Strong Genetic Predisposition for the Major Depressions 718

There Are Effective Somatic Treatments for Depression 719

A Biogenic Amine Hypothesis of Depression Has Been Proposed 720

The Original Biogenic Amine Hypothesis Is Undergoing Major Revision 723

There Are Disordered Neuroendocrine Functions in Depression 724

An Overall View 725

Selected Readings 725

References 725

Part X Development, Critical Periods, and the Emergence of Behavior 727

Determination and Differentiation in the Development of the Nervous

System 729

Samuel Schacher

Determination of Nervous Tissue Occurs Through an Interaction between Mesoderm and a Special Region of Ectoderm 731

Underlying Mesoderm Leads to Neural Induction of Neuroectoderm 732

Neural Induction Produces a Regional Specification of the Neuroectoderm That Is Irreversible 733

Differentiation Occurs in Three Phases 734

Proliferation Occurs in Specific Locations and at Specific Times 734

Cell Proliferation Occurs in Each Region of the Brain at a Particular Germinal Zone 734

Certain Neurons Proliferate Again after Migration 735

Different Types of Cells Are Generated at Different Times: The Role of Cell Lineage 735

Migration Affects Cell Differentiation 736

Cells of the Neural Crest Are Influenced by Their Local Environment 736

Cellular Interactions Aid Migration in the Cerebellar Cortex 738

An Overall View 741

Selected Readings 741

References 741

56 Synapse Formation, Trophic Interactions between Neurons, and the Development of Behavior 743

Eric R. Kandel

Information about Final Position Is Important for Establishing Precise Connections in the Central Nervous System 744

The Initial Mapping of Connections Is Thought to Involve Three Sequential Processes 746

The Outgrowing Presynaptic Cells and Their Target Cells Are Chemically Coded to Mark Their Position 746

Outgrowing Axons Are Guided to Targets by Cues Distributed along the Pathway 748

The Outgrowing Axons Selectively Recognize the Target Cells 749

The Final Stages of Synapse Formation Are Thought to Involve Numerical Matching and Fine Tuning Through Competition and Activity 749

The Size of the Target Population Influences the Number of Surviving Neurons 750

Some Early Synaptic Contacts Are Later Retracted 751

Nerve Growth Factor Is an Example of a Trophic Signal 751

Activity Can Influence the Distribution of the Acetylcholine Receptor in the Muscle Membrane 753

Activity Can Influence the Speed of Muscle Contraction 754

An Overall View 754

Selected Readings 755

57 Early Experience, Critical Periods, and Developmental Fine Tuning of Brain Architecture 757

Eric R. Kandel

There Is a Critical Period in the Development of Normal Social and Perceptual Competence 757

Isolated Young Monkeys Do Not Develop Normal Social Behavior 758

Early Sensory Deprivation Alters Perceptual Development 759

There Are Cellular Correlates of Sensory Deprivation in Experimental Animals 759

Loss of Responsiveness of Cortical Neurons to the Closed Eye Results from Altered Competition between Inputs 762

Balanced Competition Is Important for Segregating Inputs into the Cortical Columns during Normal Development 763

The Development of Ocular Dominance Can Be Followed by Injecting Single Geniculate Axons with a Marker Substance 767

Columns Can Be Induced in Brain Regions Lacking Them by Establishing Appropriate Competition 767

The Development of Ocular Dominance Columns Is an Important Model for Understanding the Development of Behavior 768

Studies of Development Are Important Clinically 769

Selected Readings 769

References 769

58 Sexual Differentiation of the Nervous System 771

Dennis D. Kelly

Reproductive Behaviors Are Sexually Dimorphic 772

Gonadal Hormones Influence the Sexual Differentiation of the Brain 772

Perinatal Hormones Affect the Sexual Differentiation of the Developing Organism 774

Fetal Exposure to Male Hormones Causes Hermaphroditism in Genetic Females 774

Steroid Hormones Influence Perinatal Development Only during Critical Periods 774 Timing of the Critical Period Varies in Different Species 775

The Brain Can Be Androgenized by Many Natural and Experimental Compounds 775

Sexually Differentiated Brains Have Different Physiological Properties and Behavioral Tendencies 776

Perinatal Hormones Also Determine the Degree to Which Sex-Linked Behaviors Are Expressed by Normal Males and Females 778

Sexual Differentiation Is Reflected in the Structure of Certain Neurons 778

Cellular Mechanisms Involved in the Development of Sex Differences in the Brain Can Be Studied in Vitro 779

A Wide Range of Behaviors Is Influenced by Sex Differences in the Organization of the Brain 780

Aggressive Behaviors: Stimuli Differ for the Two Sexes 780

Cognitive Behaviors: The Development of the Monkey Cortex Is Sexually Dimorphic 781

Human Cerebral Asymmetries Display Sexual Dimorphism 781

Human Sexuality Also Depends upon Learning 782

Selected Readings 782

References 783

59 Aging of the Brain and Dementia 784

Lucien Côté

Several Hypotheses Have Been Proposed for the Molecular Mechanisms of Aging 785

Dementia Is Prominent in the Clinical Syndromes of Aging 786

Five Characteristic Cellular Changes of Aging Occur with Increased Frequency in Dementia 786

Characteristic Biochemical Changes Take Place in the Brain with Aging 790

Alzheimer's Disease Involves Selective Loss of Cholinergic Neurons in the Basal Forebrain 791

One Form of Dementia Is of Viral Origin 791

An Overall View 791

Selected Readings 791

Part XI Genes, Environmental Experience, and the Mechanisms of Behavior 793

Genetic Determinants of Behavior

Irving Kupfermann

The Concept of Instinct: Are Aspects of Behavior Genetically Determined? 795

Ethologists Define Instincts as Inborn Motor Patterns 796

Can Behavior Be Inherited? 797

Sign Stimulus and Fixed Action Pattern Are Two **Key Concepts in the Analysis of Species-Specific** Behavior 797

Fixed Action Patterns Are Generated by Central Programs 798

The Role of Genes in the Expression of Behavior Can Now Be Studied Directly 800

Higher Mammals and Humans Seem to Have Certain Innate Behavioral Patterns 801

Certain Human Behavioral Traits Have a Hereditary Component 801

Many Human Behaviors Are Universal 801

Stereotyped Sequences of Movements Resemble Fixed Action Patterns 802

Certain Complex Patterns Require Little or No Learning 802

The Brain Sets Limits on the Structure of Language 802

Selected Readings 803

References 804

Learning 805

Irving Kupfermann

Certain Elementary Forms of Learning Are Nonassociative 806

Classical Conditioning Involves Associating a Conditioned and an Unconditioned Stimulus 806

Conditioning Involves the Learning of Predictive Relationships 807

Operant Conditioning Involves Associating an Organism's Own Behavior with a Subsequent Reinforcing Environmental Event 808

Food-Aversion Conditioning Illustrates How Biological Constraints Influence the Efficacy of Reinforcers 809

Conditioning Is Used as a Therapeutic Technique 809

Classical Conditioning Has Been Applied in Systematic Desensitization 809

Operant Conditioning Has Been Used to Treat Severe Behavioral Problems 809

Learning and Memory Can Be Classified as Reflexive or Declarative on the Basis of How Information Is Stored and Recalled 810

The Neural Basis of Memory Can Be Summarized in Four Principles 811

Memory Has Stages 811

Long-term Memory May Be Represented by Plastic Changes in the Brain 812

Memory Traces Are Often Localized in Different Places Throughout the Nervous System 812

Reflexive and Declarative Memories May Involve Different Neuronal Circuits 813

Reflexive Memory 813 Declarative Memory 813 Reflexive Versus Declarative Memory in Amnesic Patients 814

Selected Readings 814

References 815

62 Cellular Mechanisms of Learning and the **Biological Basis of Individuality 816**

Eric R. Kandel

Habituation Involves a Depression of Synaptic Transmission 817

Sensitization Involves an Enhancement of Synaptic Transmission 819

Sensitization Can Now Be Understood in Molecular Terms 820

Sensitization Can Reverse the Synaptic Depression of Habituation 821

Long-term Habituation and Sensitization Produce **Morphological Changes** 822

Cell-Biological Studies of Habituation and Sensitization Have Provided Some Basic Insights into the Mechanisms of Learning and Memory 823

Classical Conditioning Involves Activity-Dependent **Enhancement of Presynaptic Facilitation** 823

The Somatotopic Map in the Brain Is Modifiable by Experience 827

Changes in the Somatotopic Map Produced by Learning May Contribute to the Biological **Expression of Individuality** 829

Studies of Neuronal Changes with Learning Provide Insights into Psychiatric Disorders 831

An Overall View 831

Selected Readings 832

References 832

Appendix I Brain Fluids and Their Disorders 835

A. Blood-Brain Barrier, Cerebrospinal Fluid, Brain Edema, and Hydrocephalus 837

Lewis P. Rowland

Cerebrospinal Fluid Is Secreted by the Choroid Plexus 837

Specific Permeability Barriers Exist between Blood and Cerebrospinal Fluid and between Blood and Brain 839

The Blood-Brain Barrier Breaks Down in Some Diseases 841

Cerebrospinal Fluid Has Multiple Functions 842

The Composition of Cerebrospinal Fluid May Be Altered in Disease 842

Increased Intracranial Pressure May Harm the Brain 842

Brain Edema Is a State of Increased Brain Volume Due to Increased Water Content 842

Vasogenic Edema Is a State of Increased Extracellular Fluid Volume 843

Cytotoxic Edema Is the Swelling of Cellular Elements 843

Interstitial Edema Is Attributed to Increased Water and Sodium in Periventricular White Matter 843

Hydrocephalus Is an Increase in the Volume of the Cerebral Ventricles 843

Selected Readings 844

References 844

B. Cerebral Blood Flow and Metabolism 845 | Shu Chien

Mean Cerebral Blood Flow and Regional Cerebral Blood Flow Are Measured by Different Techniques 846

Mean Cerebral Blood Flow Is Measured by Arteriovenous Equilibration with Freely Diffusible Inert Gas 846 Regional Cerebral Blood Flow Is Measured by the Equilibrium Diffusion Technique 847

Cerebral Blood Flow Is Affected by Changes in Arterial Pressure and Cerebral Flow Resistance 848

Arterial Pressure Is Regulated by Circulatory Reflexes 848

Baroreceptor Reflex 848 Cerebral Ischemic Response 848

Cerebral Flow Resistance Is Subject to Several Types of Regulation 848

Blood Viscosity 848
Neural Regulation 848
Autoregulation (Independent of Vasomotor Neurons) 848

Cerebral Blood Flow and Metabolism Change under Various Conditions 849

Mean Cerebral Blood Flow and Metabolism Are Affected by Certain Pathological Conditions 849

Regional Cerebral Blood Flow and Metabolism Vary with Physiological Activities and Disease 849

Selected Readings 852

References 852

C. Stroke: Diagnostic, Anatomical, and Physiological Considerations 853

John C. M. Brust

The Blood Supply of the Brain Can Be Divided into Arterial Territories 854

Clinical Vascular Syndromes May Follow Vessel Occlusion, Hypoperfusion, or Hemorrhage 857

Infarction Can Occur in the Middle Cerebral Artery Territory 857

Infarction Can Occur in the Anterior Cerebral Artery Territory 858

Infarction Can Occur in the Posterior Cerebral Artery Territory 858

The Anterior Choroidal and Penetrating Arteries Can Become Occluded 858

The Carotid and Basilar Arteries Can Become Occluded 858

Diffuse Hypoperfusion Can Cause Ischemia or Infarction 859

The Rupture of Microaneurysms Causes Intraparenchymal Hemorrhage 859

The Rupture of Berry Aneurysms Causes Subarachnoid Hemorrhage 859

Stroke Alters the Vascular Physiology of the Brain 860

Selected Readings 861

Appendix II Neuroophthalmology 863

A. Physiological Optics, Accommodation, and Stereopsis 865

Peter Gouras

The Lens Focuses an Inverted Image on the Photoreceptors 865

Light Is Refracted in the Eye 866

Snell's Law Predicts the Refraction of Light 866 Thin Lens Formulas Are Derived from Snell's Law 867

Image Formation in Monocular Vision Has Physical Limitations 869

Alterations in Refractive Power Affect Image Formation 869

The Image Can Be Degraded by Spherical and Chromatic Aberrations 870

Blurs Can Also Be Caused by Diffraction 871

Ocular Reflexes Adapt the Eye to Changing Conditions 871

The Pupillary Light Reflex Is an Automatic Brightness Control Mechanism 871

Accommodation Allows the Eye to Focus up Close 872

Binocular Vision Is Important for Depth Perception 872

Selected Readings 874

References 875

Appendix III The Flow of Ionic and Capacitive Current in Nerve Cells 877

A. Review of Electrical Circuits 879

John Koester

Definition of Electrical Parameters 879

Potential Difference (V or E) 879

Current (I) 880

Conductance (g) 880

Capacitance (C) 880

Rules for Circuit Analysis 882

Conductance 882

Current 882

Capacitance 883

Potential Difference 883

Current Flow in Circuits with Capacitance 884

Capacitive Circuit 884

Circuit with Resistor and Capacitor in Series 885 Circuit with Resistor and Capacitor in

Parallel 886

B. Problem Set for Chapters 5-9 887

Bibliography 895 Illustration and Table Credits 923

Name Index 927

Subject Index 941