CONTENTS

UNIVERSIDAD NACIONAL DE ENTRA
PACULTAO DE INCENIE
PENTRO DE MEDIOS
PERELIOTECA

	1. SYMMETRIC LINEAR SYSTEMS	393	3		
1.1	Introduction		1		
1.2	Gaussian Elimination		4		
1.3	Positive Definite Matrices and $A = LDL^T$		15		
1.4	Minimum Principles		32		
1.5	Eigenvalues and Dynamical Systems		47		
1.6	A Review of Matrix Theory		68		
2. EQUILIBRIUM EQUATIONS					
2.1	A Framework for the Applications		87		
2.2	Constraints and Lagrange Multipliers		96		
2.3	Electrical Networks	j	110		
2.4	Structures in Equilibrium	1	123		
2.5	Least Squares Estimation and the Kalman Filter	1	137		
3. EQUILIBRIUM IN THE CONTINUOUS CASE					
3.1	Introduction: One-dimensional Problems	1	155		
3.2	Differential Equations of Equilibrium	j	166		
3.3	Laplace's Equation and Potential Flow	1	182		
3.4	Vector Calculus in Three Dimensions	1	199		
3.5	Equilibrium of Fluids and Solids	2	220		
3.6	Calculus of Variations	17	242		

	4. ANALYTICAL METHODS	
4.1	Fourier Series and Orthogonal Expansions	263
4.2	Discrete Fourier Series and Convolution	290
4.3	Fourier Integrals	309
4.4	Complex Variables and Conformal Mapping	330
4.5	Complex Integration	352
	5. NUMERICAL METHODS	
5.1	Linear and Nonlinear Equations	367
5.2	Orthogonalization and Eigenvalue Problems	382
5.3	Semi-direct and Iterative Methods	403
5.4	The Finite Element Method	428
5.5	The Fast Fourier Transform	448
	6. INITIAL-VALUE PROBLEMS	
6.1	Ordinary Differential Equations	471
6.2	Stability and the Phase Plane and Chaos	492
6.3	The Laplace Transform and the z-Transform	513
6.4	The Heat Equation vs. the Wave Equation	536
6.5	Difference Methods for Initial-Value Problems	562
6.6	Nonlinear Conservation Laws	587
	7. NETWORK FLOWS AND COMBINATORICS	
7.1	Spanning Trees and Shortest Paths	607
7.2	The Marriage Problem	620
7.3	Matching Algorithms	629
7.4	Maximal Flow in a Network	640
7.5	The Transportation Problem	651
	8. OPTIMIZATION	
8.1	Introduction to Linear Programming	665
8.2	The Simplex Method and Karmarkar's Method	673
8.3	Duality in Linear Programming	692
8.4	Saddle Points (Minimax) and Game Theory	704
8.5	Nonlinear Optimization	718
Appe	ndix: Software for Scientific Computing	735
References and Acknowledgements		738
Solutions to Selected Exercises		741
Index		751