CONTENTS

vii

UNIVERSIDAD NACIONAL DE ENTRE RIOS FACULTAD DE INGENIERIA CENTRO DE MEDIOS BIBLIOTECA

P1734

	Preface	xi
Chapter 1	Feedback Control	1
1.1	The Mechanism of Feedback	1
1.2	Feedback Control Engineering	6
1.3	Control Theory Background	8
1.4	Scope and Organization of This Book	10
	Notes	12
	References	13
Chapter 2	State-Space Representation of Dynamic	
	Systems	14
2.1	Mathematical Models	14
2.2	Physical Notion of System State	16
2.3	Block-Diagram Representations	25
2.4	Lagrange's Equations	29
2.5	Rigid Body Dynamics	33
2.6	Aerodynamics	40
2.7	Chemical and Energy Processes	45
	Problems	52
	Notes	55
	References	56
Chapter 3	Dynamics of Linear Systems	58
3.1	Differential Equations Revisited	58
3.2	Solution of Linear Differential Equations in State-Space	50
	Form	59
3.3	Interpretation and Properties of the State-Transition Matrix	65
3.4	Solution by the Laplace Transform: The Resolvent	68

viii CONTENTS

3.5	Input-Output Relations: Transfer Functions	75
3.6	Transformation of State Variables	84
3.7	State-Space Representation of Transfer Functions:	
3.,	Canonical Forms	88
3.4	Problems	107
2	Notes	109
*	References	111
Chapter 4	Frequency-Domain Analysis	112
4.1	Status of Frequency-Domain Methods	112
4.2	Frequency-Domain Characterization of Dynamic Behavior	113
4.3	Block-Diagram Algebra	116
4.4	Stability	124
4.5	Routh-Hurwitz Stability Algorithms	128
4.6	Graphical Methods	133
4.7	Steady State Responses: System Type	156
4.8	Dynamic Response: Bandwidth	161
4.9	Robustness and Stability (Gain and Phase) Margins	169
4.10		174
	Problems	184
	Notes	187
	References	189
*		100
Chapter 5	Controllability and Observability	190
5.1	Introduction	190
5.2	Where Do Uncontrollable or Unobservable Systems Arise?	194
5.3	Definitions and Conditions for Controllability and	
	Observability	203
5.4	Algebraic Conditions for Controllability and Observability	209
5.5	Disturbances and Tracking Systems: Exogenous Variables	216
	Problems	218
	Notes	219
	References	221
Chanton 6	Shaping the Dynamic Response	222
Chapter 6		222
6.1	Introduction	224
6.2	Design of Regulators for Single-Input, Single-Output Systems	234
6.3	Multiple-Input Systems	236
6.4	Disturbances and Tracking Systems: Exogenous Variables	243
6.5	Where Should the Closed-Loop Poles Be Placed?	254
	Problems	257
	Notes References	258
	INCITATIONS.	

110.	ALL PRODUCTION OF THE PARTY OF		100	
UNIVEDO.	STATE OF THE PARTY	Street, or other teachers.	CONTENT	S ix
FACTORDA	10	MORP ARREST	A Steam	

Chapter 7 7.1	Linear Observers The Need for Observers	CENTRO DE INCENTRERIOS BIBLIOTECA	259
7.2	Structure and Properties of Observers	LIOTEDIOS ERIA	260
7.3	Pole-Placement for Single-Output Syst	ems	263
7.4	Disturbances and Tracking Systems: E		267
7.5	Reduced-Order Observers		276
1 h	Problems		287
Me	Notes		288
	References		289
Chapter 8	Compensator Design by the	Separation	
	Principle		290
8.1	The Separation Principle		290
8.2	Compensators Designed Using Full-O	rder Observers	291
8.3	Reduced-Order Observers		298
8.4	Robustness: Effects of Modeling Error		301
8.5	Disturbances and Tracking Systems: E		310
8.6	Selecting Observer Dynamics: Robust	Observers	314
8.7	Summary of Design Process		326
	Problems		332
	Notes		335
	References		336
Chapter 9	Linear, Quadratic Optimum	Control	337
9.1	Why Optimum Control?		337
9.2	Formulation of the Optimum Control		338
9.3	Quadratic Integrals and Matrix Differ	ential Equations	341
9.4	The Optimum Gain Matrix		343
9.5	The Steady State Solution		345
9.6	Disturbances and Reference Inputs: E	Exogenous Variables	350
9.7	General Performance Integral	1.7	364
9.8	Weighting of Performance at Termina Problems	1 11me	365
	Notes		369 375
	References		377
Chantar 10	Random Processes		378
•			
	Introduction		378
10.2	Conceptual Models for Random Pro		379
10.3 10.4	Statistical Characteristics of Random Power Spectral Density Function	1 Frocesses	381 384
10.4	White Noise and Linear System Res	nonse	386
10.5	Spectral Factorization	polise	393
10.7	Systems with State-Space Representa	ation	396
10.8	The Wiener Process and Other Integ		
	Processes		404

X CONTENTS

	Problems	407
	Notes	408
2	References	409
Chapter 11	Kalman Filters: Optimum Observers	411
11.1	Background	411
11.2	The Kalman Filter is an Observer	412
11.3	Kalman Filter Gain and Variance Equations	414
11.4	Steady State Kalman Filter	417
11.5	The "Innovations" Process	425
11.6	Reduced-Order Filters and Correlated Noise	427
11.7	Stochastic Control: The Separation Theorem	442
11.8	Choosing Noise for Robust Control	455
	Problems	461
	Notes	468
	References	469
	Appendix Matrix Algebra and Analysis	471
	Bibliography	498
	Index of Applications	503
	Index	506