

FACULTAD DE INCENIERIA CENTRO DE MEDIOS BIBLIOTECA

UNIVERSIDAD NACIONAL D'ENTRE RIO

Contents

	Nº1 771	
Preface		v
Background Notation		vii
CHAPTER 1		
Topology		1
1.1 Topological Spaces		2
1.2 Metric Spaces		9
1.3 Continuity		14
1.4 Subspaces, Products, and Quotients		18
1.5 Compactness		24
1.6 Connectedness		31
1.7 Baire Spaces		37

Banach Spaces and Differential Calculus

2.1 Banach Spaces 2.2 Linear and Multilinear Mappings 2.3 The Derivative 2.4 Properties of the Derivative

CHAPTER 3

CHAPTER 4

3.1 Manifolds

4.4 Froi	
CHAPTER	
Tensors	

4.1 Vector Fields and Flows 4.2 Vector Fields as Differential Operators 4.3 An Introduction to Dynamical Systems penius' Theorem and Foliations

3.3 The Tangent Bundle

3.4 Vector Bundles

Manifolds and Vector Bundles

5 5.1 Tensors in Linear Spaces

5.2 Tensor Bundles and Tensor Fields

Vector Fields and Dynamical Systems

2.5 The Inverse and Implicit Function Theorems

3.2 Submanifolds, Products, and Mappings

3.5 Submersions, Immersions and Transversality

5.3 The Lie Derivative: Algebraic Approach 5.4 The Lie Derivative: Dynamic Approach 5.5 Partitions of Unity

40

40

56

75

83

116

141

141

150

157

167

196

238

238

265

349

359

370

377

CHAPTER 6	
Differential Forms	392
6.1 Exterior Algebra	392
6.2 Determinants, Volumes, and the Hodge Star Operator	402
6.3 Differential Forms	417
6.4 The Exterior Derivative, Interior Product, and Lie Derivative	423
6.5 Orientation, Volume Elements, and the Codifferential	450
CHAPTER 7	
Integration on Manifolds	464
7.1 The Definition of the Integral	464
7.2 Stokes' Theorem	476
7.3 The Classical Theorems of Green, Gauss, and Stokes	504
7.4 Induced Flows on Function Spaces and Ergodicity	513
7.5 Introduction to Hodge-deRham Theory and Topological Applications of	
Differential Forms	538
CHAPTER 8	
Applications	560
8.1 Hamiltonian Mechanics	560
8.2 Fluid Mechanics	584
8.3 Electromagnetism	599
8.3 The Lie-Poisson Bracket in Continuum Mechanics and Plasma Physics	609
8.4 Constraints and Control	624
References	631
Index	643

Supplementary Chapters-Available from the authors as they are produced

- S-1 Lie Groups
- S-2 Introduction to Differential Topology
- S-3 Topics in Riemannian Geometry