Contents in Brief | Th | e History of Molecular Cell Biology | 1 | |-----|---|-----| | PAF | $lpha_T oldsymbol{I}$ | | | M | olecules, Cells, Proteins, and | | | E | operimental Techniques: A Primer | 17 | | 1 | Chemical Foundations | 19 | | 2 | Molecules in Cells | 43 | | 3 | Synthesis of Proteins and Nucleic
Acids | 85 | | 4 | The Study of Cell Organization and
Subcellular Structure | 109 | | 5 | Growing and Manipulating Cells and
Viruses | 151 | | 6 | Manipulating Macromolecules | 189 | | PA | $_{ extit{RT}}$ II | | | G | ene Expression, Structure, and | | | R | eplication | 227 | | 7 | RNA Synthesis and Gene Control in
Prokaryotes | 229 | | 8 | RNA Synthesis and Processing in
Eukaryotes | 261 | | 9 | The Structure of Eukaryotic
Chromosomes | 317 | 18 | Organelle Biogenesis: The Nucleus,
Chloroplast, and Mitochondrion | 681 | |-------|--|-------|----|---|------| | 10 | Eukaryotic Chromosomes and
Genes: Molecular Anatomy | 347 | 19 | Cell-to-Cell Signaling: Hormones
and Receptors | 709 | | 11 | Gene Control and the Molecular
Genetics of Development in | 828.1 | 20 | Nerve Cells and the Electric
Properties of Cell Membranes | 763 | | 12 | Eukaryotes DNA Replication, Repair, and | 391 | 21 | Microtubules and Cellular
Movements | 815 | | | Recombination | 449 | 22 | Actin, Myosin, and Intermediate
Filaments: Cell Movements and Cell
Shapes | 859 | | 0.000 | III | | 23 | Multicellularity: Cell-Cell and Cell- | 0.37 | | Cell | Structure and Function | 489 | - | Matrix Interactions | 903 | | 13 | The Plasma Membrane | 491 | | | | | 14 | Transport across Cell Membranes | 531 | | IV | | | 15 | Energy Conversion: The Formation of ATP in Mitochondria and | | | e New Biology: Facing Classic estions at the Frontier | 9.53 | | | Bacteria | 583 | 24 | Cancer | 955 | | 16 | Photosynthesis | 617 | 25 | Immunity | 1003 | | 17 | Plasma-membrane, Secretory, and
Lysosome Proteins: Biosynthesis and | | 26 | Evolution of Cells | 1049 | | | Sorting | 639 | | Index | 1077 | ## **Contents** | Chapter-opening Illustrations | xxxix | |--|-------| | INTRODUCTION The History of Molecular Cell Biology | 1 | | Evolution and the Cell Theory | 2 | | The Theory of Evolution Arises from
Naturalistic Studies | 2 | | The Cell Theory Comes to Prominence
through Improved Microscopic Techniques
and Recognition That Single Cells Can Grow
and Divide | 3 | | Classical Biochemistry and Genetics | 4 | | Biochemistry Begins with the Demonstration
That Chemical Transformations Can Take
Place in Cell Extracts | 4 | | Classical Genetics Begins with the Controlled
Breeding Studies of Gregor Mendel | 5 | | Chromosomes Are Identified as the Carriers
of the Mendelian Theory of Heredity | 7 | | The Reduction of Chromosome Numbers in
Meiosis That Forms Germ Cells Is Crucial to
the Development of the Chromosome Theory
of Heredity | 7 | | Chromosomes Are Shown to Contain Linear
Arrays of Genes That Can Undergo
Reordering | 8 | | | | | The Merging of Genetics and Biochemistry | 9 | Acids Release Hydrogen Ions and Bases | 29 | |---|----------------------------|---|--| | Drosophila Studies Establish the Connection
between Gene Activity and Biochemical | | Combine with Hydrogen Ions
Many Biological Molecules Contain Multiple
Acidic or Basic Groups | 29 | | Action; Neurospora Experiments Confirm
That One Gene Controls One Enzyme | 9 | The Direction of Chemical Reactions | 31 | | DNA Is Identified as the Genetic Material,
Paving the Way for the Study of the
Molecular Basis of Gene Structure and | | The Change in Free Energy ΔG Determines the Direction of a Chemical Reaction | 31 | | Function | 10 | The Generation of a Concentration Gradient | 33 | | The Birth of Molecular Biology | 11 | Requires an Expenditure of Energy | 33 | | Watson and Crick Deduce the Double-helical
Structure of DNA | 11 | Many Cellular Processes Involve the Transfer
of Electrons in Oxidation-Reduction
Reactions | 34 | | X-ray Crystallography Facilitates the
Construction of Three-dimensional Models of
Complex Biological Molecules | 11 | An Unfavorable Chemical Reaction Can
Proceed if It Is Coupled with an Energetically
Favorable Reaction | 35 | | Biochemical Experiments Have Elucidated the
Relationship between Enzymes and Metabolic
Pathways | 12 | Hydrolysis of the Phosphoanhydride Bonds in
ATP Releases Substantial Free Energy | 3.5 | | A Modern View of Cell Structure | 12 | ATP Is Used to Fuel Many Cellular Processes | 37 | | Advances in Electron Microscopy Reveal the | 12 | Activation Energy and Reaction Rate | 38 | | Commonality of Structures within Eukaryotic | | Energy Is Required to Initiate a Reaction | 39 | | Cells | 12 | Enzymes Catalyze Biochemical Reactions | 39 | | Biochemical Activities Can Be Assigned to
Specific Subcellular Structures | 13 | Summary | 41
41 | | The Activity of Genes Is Highly Regulated by
the Protein Products of Other Genes | 13 | References | | | | | | | | The Molecular Approach Is Applied to
Eukaryotic Cells | 13 | CHAPTER 2 Molecules in Cells | 43 | | The Molecular Approach Is Applied to | 13
14 | CHAPTER 2 Molecules in Cells Proteins | 43
44 | | The Molecular Approach Is Applied to
Eukaryotic Cells
References | | | | | The Molecular Approach Is Applied to
Eukaryotic Cells | | Proteins Amino Acids—the Building Blocks of | 44 | | The Molecular Approach Is Applied to Eukaryotic Cells **References** **PART I | | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of | 44
44 | | The Molecular Approach Is Applied to Eukaryotic Cells References | | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is | 44
44
46 | | The Molecular Approach Is Applied to Eukaryotic Cells References PART I Molecules, Cells, Proteins, and | 14 | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is Determined through X-ray Crystallography The Structure of a Polypeptide Can Be | 44
44
46
46 | | The Molecular Approach Is Applied to Eukaryotic Cells *** ** *** ** ** ** ** ** * | 14
17
19 | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is Determined through X-ray Crystallography The Structure of a Polypeptide Can Be Described at Four Levels Two Regular Secondary Structures Are | 44
44
46
46
47 | | The Molecular Approach Is Applied to Eukaryotic Cells ** * * ** ** * ** ** ** ** ** ** ** ** ** ** ** ** ** * ** * ** | 14 | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is Determined through X-ray Crystallography The Structure of a Polypeptide Can Be Described at Four Levels Two Regular Secondary Structures Are Particularly Important Many Proteins Are Organized into Domains Regions of Similar Architecture Often Have | 44
44
46
46
47
48
50 | | The Molecular Approach Is Applied to Eukaryotic Cells *** ** ** ** ** ** ** ** ** | 14
17
19
20 | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is Determined through X-ray Crystallography The Structure of a Polypeptide Can Be Described at Four Levels Two Regular Secondary Structures Are Particularly Important Many Proteins Are Organized into Domains Regions of Similar Architecture Often Have Similar Sequences Many Proteins Contain Tightly Bound | 44
44
46
46
47
48 | | The Molecular Approach Is Applied to Eukaryotic Cells References PART I Molecules, Cells, Proteins, and Experimental Techniques: A Primer CHAPTER 1 Chemical Foundations Energy Chemical Bonds The Most Stable Bonds between Atoms Are | 17
19
20
20 | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is Determined through X-ray Crystallography The Structure of a Polypeptide Can Be Described at Four Levels Two Regular Secondary Structures Are Particularly Important Many Proteins Are Organized into Domains Regions of Similar Architecture Often Have Similar Sequences | 44
46
46
47
48
50 | | The Molecular Approach Is Applied to Eukaryotic Cells *** ** ** ** ** ** ** ** ** | 17
19
20
20
20 | Proteins Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is Determined through X-ray Crystallography The Structure of a Polypeptide Can Be Described at Four Levels Two Regular Secondary Structures Are Particularly Important Many Proteins Are Organized into Domains Regions of Similar Architecture Often Have Similar Sequences Many Proteins Contain Tightly Bound Prosthetic Groups Covalent Modifications Affect the Structures | 44
44
46
46
47
48
50
51 | | The Molecular Approach Is Applied to Eukaryotic Cells References V V V Molecules, Cells, Proteins, and Experimental Techniques: A Primer CHAPTER 1 Chemical Foundations Energy Chemical Bonds The Most Stable Bonds between Atoms Are Covalent Noncovalent Bonds Stabilize the Structures of Biological Molecules | 17
19
20
20
20 | Amino Acids—the Building Blocks of Proteins—Differ Only in Their Side Chains Polypeptides Are Polymers Composed of Amino Acids Connected by Peptide Bonds Three-dimensional Protein Structure Is Determined through X-ray Crystallography The Structure of a Polypeptide Can Be Described at Four Levels Two Regular Secondary Structures Are Particularly Important Many Proteins Are Organized into Domains Regions of Similar Architecture Often Have Similar Sequences Many Proteins Contain Tightly Bound Prosthetic Groups Covalent Modifications Affect the Structures and Functions of Proteins | 44
44
46
46
47
48
50
51 | | Enzymes | 55 | Glycolipids of Various Structures Are Found | | |---|-----|---|----------| | Certain Amino Acids in Enzymes Bind | | in the Cell Surface Membrane | 81 | | Substrates: Others Catalyze Reactions on the
Bound Substrates | 56 | The Primacy of Proteins | 82 | | Trypsin and Chymotrypsin Are Well-
characterized Proteolytic Enzymes | 56 | Summary
References | 82
83 | | Coenzymes Are Essential for Certain
Enzymatically Catalyzed Reactions | 59 | CHAPTER 3 Synthesis of Proteins and
Nucleic Acids | 85 | | Substrate Binding May Induce a
Conformational Change in the Enzyme | 60 | Rules for the Synthesis of Proteins and | | | The Catalytic Activity of an Enzyme Can Be
Characterized by a Few Numbers | 61 | Nucleic Acids Protein Synthesis: The Three Roles of RNA | 86
87 | | The Actions of Most Enzymes Are Regulated | 62 | Messenger RNA Carries Information from | 200 | | Antibodies | 65 | DNA in a Three-Letter Genetic Code | 88 | | Antibodies Can Distinguish among Closely
Similar Molecules | 65 | Synthetic mRNA and Trinucleotides Break the
Code | 89 | | Antibodies Are Valuable Tools for Identifying
and Purifying Proteins | 66 | The Anticodon of Transfer RNA Decodes
mRNA by Base Pairing with Its Codon | 91 | | Nucleic Acids | 300 | Aminoacyl-tRNA Synthetases Activate tRNA | 93 | | Nucleic Acids Are Linear Polymers of | 66 | Each tRNA Molecule Must Be Identifiable by
a Specific rRNA Synthetase | 94 | | Nucleotides Connected by Phosphodiester
Bonds | 66 | Ribosomes Are Protein-synthesizing Machines | 95 | | DNA | 68 | The Steps in Protein Synthesis | 99 | | The Native State of DNA Is a Double Helix | 00 | AUG Is the Initiation Signal in mRNA | 99 | | of Two Antiparallel Chains with
Complementary Nucleotide Sequences | 69 | Initiation Factors, tRNA, mRNA, and the
Small Ribosomal Subunit Form an Initiation | | | DNA Is Denatured When the Two Strands
Are Made to Separate | 71 | Complex
Ribosomes Use Two tRNA-binding Sites (A | 100 | | Many DNA Molecules Are Circular | 72 | and P) during Protein Elongation | 100 | | Many Closed Circular DNA Molecules Are
Supercoiled | 72 | UAA, UGA, and UAG Are the Termination
Codons | 101 | | RNA Is Usually Single-stranded and Serves | V = | Rare tRNAs Suppress Nonsense Mutations | 101 | | Many Different Functions | 73 | Nucleic Acid Synthesis | 101 | | Lipids and Biomembranes | 75 | Nucleic Acid Synthesis Can Be Described by
Five Rules | 101 | | Fatty Acids Are the Principal Components of
Membranes and Lipids | 75 | Chemical Differences between RNA and
DNA Provide Functional Properties | 106 | | Phospholipids Are Key Components of
Biomembranes | 76 | Summary | 107 | | Certain Steroids Are Components of
Biomembranes | 76 | References | 107 | | Phospholipids Spontaneously Form Micelles
or Bilayers in Aqueous Solutions | 77 | CHAPTER 4 The Study of Cell Organization and Subcellular | | | Carbohydrates | 77 | Structure | 109 | | Many Important Sugars Are Hexoses | 77 | Prokaryotic and Eukaryotic Cells | 111 | | Polymers of Glucose Serve as Storage
Reservoirs | 79 | Prokaryotes Have a Simpler Structure Than
Eukaryotes | 111 | | Glycoproteins Are Composed of Proteins
Covalently Bound to Sugars | 80 | Eukaryotic Cells Have Complex Systems of
Internal Membranes and Fibers | 113 | | 114 | Proteins Are Secreted by the Fusion of an
Intracellular Vesicle with the Plasma
Membrane | 139 | |-------------|---|--| | 116 | Small Vesicles May Shuttle Membrane | 140 | | 116 | Lysosomes Contain a Battery of Degradative | 140 | | 117 | | 140 | | San San San | and Enable the Cell to Elongate Rapidly | 142 | | 118 | Contractile Vacuoles in Certain Protozoans
Function in Osmotic Regulation | 143 | | 120 | Peroxisomes Produce and Degrade Hydrogen | | | 122 | | 144 | | 122 | ATP Production in Aerobic Cells | 144 | | 123 | | 145 | | 125 | The Plasma Membrane Has Many Varied and
Essential Roles | 145 | | 126 | Cilia and Flagella Are Motile Extensions of
the Eukaryotic Plasma Membrane | 145 | | 126 | Microvilli Enhance the Absorption of
Nutrients | 146 | | 127 | The Plasma Membrane Binds to the Cell Wall
or the Extracellular Matrix | 146 | | 420 | Summary | 148 | | 128 | References | 148 | | 129 | | | | 129 | CHAPTER 5 Growing and Manipulating | 0.8428 | | 130 | Cells and Viruses | 151 | | 122 | Types of Cell Division | 152 | | 133 | The Cell Cycle in Prokaryotes Consists of
DNA Replication Followed Immediately by
Cell Division | 152 | | 133 | Eukaryotic DNA Synthesis Occurs in a | 152 | | 134 | | | | 134 | Apportions the New Chromosomes Equally
to Daughter Cells | 154 | | 134 | Meiosis Is the Form of Cell Division in
Which Haploid Cells Are Produced from | 156 | | 136 | The Growth of Microorganisms and Cells in | | | | Culture | 159 | | 138 | Molecular Biologists | 159 | | 139 | Genes Can Be Transferred between Bacteria
in Three Ways | 161 | | | 116 117 118 120 122 123 125 126 126 127 128 129 129 130 132 133 134 134 134 134 134 134 | 114 Intracellular Vesicle with the Plasma Membrane Constituents from One Organelle to Another Lysosomes Contain a Battery of Degradative Enzymes That Function at pH 5 Vacuoles in Plant Cells Store Small Molecules and Enable the Cell to Elongate Rapidly Contractile Vacuoles in Certain Protozoans Function in Osmotic Regulation Peroxisomes Produce and Degrade Hydrogen Peroxide The Mitochondrion Is the Principal Site of ATP Production in Aerobic Cells Chloroplasts Are the Sites of Photosynthesis The Plasma Membrane Has Many Varied and Essential Roles Cilia and Flagella Are Motile Extensions of the Eukaryotic Plasma Membrane Microvilli Enhance the Absorption of Nutrients The Plasma Membrane Binds to the Cell Wall or the Extracellular Matrix Summary References CHAPTER 5 Growing and Manipulating Cells and Viruses Types of Cell Division The Cell Cycle in Prokaryotes Consists of DNA Replication Followed Immediately by Cell Division Eukaryotic DNA Synthesis Occurs in a Special Phase of the Cell Cycle Mitosis Is the Complex Process That Apportions the New Chromosomes Equally to Daughter Cells Meiosis Is the Form of Cell Division in Which Haploid Cells Are Produced from Diploid Cells The Growth of Microorganisms and Cells in Culture Escherichia coli Is a Favorite Organism of Molecular Biologists Genes Can Be Transferred between Bacteria | | The Yeast Life Cycle Includes Haploid and
Diploid Phases | 164 | Labeled Precursors Can Trace the Assembly
of Macromolecules and Their Distribution in | | |---|--------|---|-----| | Cultured Animal Cells Share Certain Growth | 12:2:3 | a Cell | 193 | | Requirements and Capacities | 166 | Determining the Size of Nucleic Acids and
Proteins | 194 | | Cell Fusion: An Important Technique in
Somatic-Cell Genetics | 170 | Centrifugation Is Used to Separate Particles | | | Hybrid Cells Containing Chromosomes from
Different Mammals Assist in Gene-mapping
Studies | 170 | and Molecules that Differ in Mass or Density
Electrophoresis Separates Molecules
According to Their Charge-Mass Ratio | 195 | | Mutants in Salvage Pathways of Purine and
Pyrimidine Synthesis Are Good Selective
Markers | 171 | Gel Electrophoresis Can Separate Most
Proteins in a Cell | 200 | | Hybridomas Are Fused Lymphoid Cells That
Make Monoclonal Antibodies | 172 | In Vitro Protein Synthesis and Gel
Electrophoresis Provide an Assay for | | | DNA Transfer into Eukaryotic Cells | 173 | Messenger RNA | 201 | | Yeast Cells Exhibit Homologous
Recombination of Foreign DNA in Contrast | | Examining the Sequences of Nucleic Acids and Proteins | 202 | | to Nonspecific Integration in Mammalian
Cells | 173 | Molecular Hybridization of Two Nucleic Acid
Strands Can Be Detected in Several Ways | 202 | | Foreign DNA Can Be Introduced into the
Germ Line of Animals to Produce Transgenic
Strains | 174 | Fingerprinting (Partial Sequence Analysis)
Allows Quick Comparisons of | 70 | | Plants Can Be Regenerated from Plant Cell
Cultures | 175 | Macromolecules Restriction Enzymes Allow the Precise Mapping of Specific Sites in DNA | 206 | | Viruses: Structures and Function | 176 | A.A. 180 1.5 | | | Most Viral Host Ranges Are Narrow | 178 | The Sequence of Nucleotides in Long
Stretches of DNA Can Be Rapidly | | | Viruses Can Be Accurately Counted | 179 | Determined | 212 | | Viral Growth Cycles Can Be Divided into
Stages | 179 | Proteins Can Be Sequenced Automatically | 213 | | Bacterial Viruses Are Widely Used to
Investigate Biochemical and Genetic Events | 180 | Recombinant DNA: Selection and Production of Specific DNA | 214 | | Plant Viruses Proved That RNA Can Act as a
Genetic Material | 181 | cDNA Clones Are Whole or Partial Copies of
mRNA | 215 | | Animal Viruses Are Very Diverse | 181 | Genomic Clones Are Copies of DNA from | | | Summary | 186 | Chromosomes | 217 | | References | 186 | Vectors for Recombining DNA Exist in Many
Cell Types | 218 | | CHAPTER 6 Manipulating Macromolecules | 189 | The Polymerase Chain Reaction Amplifies
Specific DNA Sequences in a Mixture | 219 | | Radioisotopes: The Indispensible Modern
Means of Following Biological Activity | 190 | Controlled Deletions and Base-specific
Mutagenesis of DNA | 219 | | Radioisotopes Are Detected by Autoradiology
or by Quantitative Assays | 191 | Synthetic Peptide and Nucleotide Sequences:
Their Use in Isolating and Identifying Genes | 220 | | Pulse-chase Experiments Must Be Designed | | Summary | 222 | | with Knowledge of the Cell's Pool of Āmino
Acids and Nucleotides | 192 | References | 222 |