Contents

Foreword	
PREFACE	
ACKNOWLEDGEMENTS	XIV
PART I MANUFACTURING	
1 INTRODUCTION	3
Definitions and Limitations	6
Organization of the Book	9
2 CONVENTIONAL MANUFACTURE-A POINT OF DEPARTURE	12
The Design Cycle	13
The Material Cycle	19
Organization for Manufacture	23
3 THE BASIC STRUCTURE	27
Compartmentation and Fragmentation of Management	27
From Handcraft to Division of Labor	27
The Evolution of Mass Productoin	29
Stratification of Industry	30
Effects of Major Technological Changes	32
Patterns of Manufacturing Systems	36
The Many Levels of Sophistication in Manufacture	40
Operations	40
Information is the Medium of Management	53
PART II COMPUTER AIDED MANUFACTURING	59
4 DOWN LINKS: INSTRUCTIONS AND COMMANDS	61
An Introduction to Numerical Control	61
The History of Numerical Control	73
Direct Numerical Control	75
The Building Blocks	76
The Rationale of DNC	81

	Three Additional Direct Link Uses Computer Numerical Control Programmable Controllers Batch Transmission of Data	88 91 94 99
5	UP LINKS: REPORTS OF ACCOMPLISHMENT Character of Information Handled in an Up Link Machine Performance Man's Performance Materials Location and Activity Quantities Identities Transmission Methods Source Data Acquisition Production Monitoring Systems	100 101 102 104 105 106 107 108 111 116
6	CROSS LINKS: PLANS, SCHEDULES, AND CONTROLS Scheduling Long-range Planning Short-range Planning Control	120 122 123 125 132
7	MATERIALS MANAGEMENT Materials Handling—Movement Materials Handling—Waiting Time Materials Handling—Storage Time Mechanization of Materials Handling Computer Controlled Materials Handling Changes in Storage Facilities Effect of Materials-Handling Equipment on Plant Configuration	134 134 135 136 136 139 152 157
8	COMPUTER AIDED DESIGN The Design Process Calculations Interactive Graphics Graphic Parts Programming Digitized Data Nonconversational Graphic Output Plotting Tables Engineering Drawings	162 162 168 172 175 178 182 183 186
9	COMPUTER APPLICATIONS IN THE AREAS OF INSPECTION, ASSEMBLING, AND TESTING Inspecting On-Machine Inspection In-Process Measurement Assembling Testing	190 190 195 196 197 206

PAF	RT III COMPUTER INTEGRATED MANUFACTURING	209
10	THE COMPUTER IN THE FACTORY	211
	Manufacturing Information Systems	214
	The Basic Principles	215
	Data Based Manufacturing Control Systems	220
	Files	221
	Chains and Lists	222
	Use	222
	Routine Schedules and Commands	223
	Alerts and Alarms	225
	Paperwork	226
11	THE SHAPE OF THINGS TO COME	227
	Product Design	231
	Manufacturing Engineering	233
	Operating Instructions	236
	lies and Fixtures	237
	Cost Estimates	238
	Purchasing and Warehousing	239
	Scheduling	242
	Shop Orders	245
	Operations	248
	Other Functions	248
	Repetitive Manufacturing	249
	Product Definition	251
	Scheduling	252
	Summary	253
12	SHOULD I?	256
	Is This the Time?	257
	Competition	257
	Complexity	258
	Forced Changes	260
	NC Machines	260
	Computers	261
	How Far Should I Go?	261
	How Much Will It Cost?	262
	Can I Justify the Cost?	265
	How Long Will It Take?	267
	How Will All This Affect What I Now Have?	270
	Summary	271
13	HOW TO GET FROM HERE TO THERE	272
10	The Right Key Men	273
	Where to Start	275

14	THE IMPACT OF COMPUTER INTEGRATED MANUFACTURING ON	
	PEOPLE	280
1	Reductions in Skill Requirements	280
	NC Operators	281
	Expediters	282
	Tool Setters	283
	Inspectors	283
	Tool Designers	284
	Increases in Skill Requirements	284
	Maintenance Men	286
	Foremen	286
	Production Controllers	286
	The President	287
	The Changing Functions of Management at All Levels	287
	Specialists and Generalists	289
	GLOSSARY	293
	BIBLIOGRAPHY	316
	INDEX	318