

UNIVERSIDAD NAGIONAL DE ENTR FACULTAD DE IN NII CENTRO DE MEDIOS BIBLIOTECA

PART 1 THEORETICAL TOPICS AND METHODS

1. Generating-function methods in probability theory

	Continuing innervations in processing, investigation	- 7
1.1	Introduction	1
1.2	Notation and definitions	2
1.3	Probability generating functions	4
1.4	Laplace transform	10
1.5	Moment generating functions	14
1.6	Characteristic functions	17
1.7	Philosophical reflections on this approach	24
2.	Spectral characterisation of cyclostationary random	
	processes	26
2.1	Introduction	26
2.2	Stochastic processes – general concepts	26
2.3	Power spectrum for a stochastic process	29
2.4	Cyclostationary processes	32
3.	Markov chains	38
3.1	Introduction	38
3.2	Discrete-time Markov chains	38
3.3	Continuous-time Markov chains	52
3.4	Illustrative practical examples	57
3.5	Concluding remarks	62
4.	Bounds and approximations in probability theory	63
4.1	Introduction	63
4.2	Gaussian approximations and bounds	64
4.3	Bounds as expectational functionals	67
4.4	Moment space methods	71
4.5	Series approximations	75
	arana aktramanana	

PART 2 COMPOUND RANDOMNESS

5.	Statistical modelling of traffic in networks	80
5.1	Introduction	80
5.2	Statistical modelling of traffic groups	81
5.3	Statistical theory of traffic in networks	95
6.	Traffic overflow and the interrupted Poisson process	108
6.1	Introduction	108
6.2	Basic properties of the IPP	108
6.3	Overflow traffic	112
6.4	Matrix solution method	114
6.5	Generalisations	118
7.	Generating functions and bounds in optical	
-	communications	119
7.1	Introduction	119
7.2	Optical direct detection method	120
7.3	Statistical description for the detected optical signal	122
7.4	Avalanche gain considerations	124
7.5	Receiver noise	126
7.6	Binary optical signalling	126
7.7	Conclusion	132
8.	Modelling burst errors in digital transmission	134
8.1	Introduction	134
8.2	The NTA distribution	135
8.3	Fitting data	136
8.4	Network performance in relation to the NTA	
	distribution	138
8.5		141
8.6	Conclusions	142
PAR	T 3 NON-LINEAR OPERATIONS ON	
STO	CHASTIC PROCESSES	-
9.	Non-linear operations on stochastic processes	144
9.1	Introduction	144
9.2	Some definitions and basic theory	145
9.3	Representation of non-linearities	152
9.4	Direct transformation	155
	THE SECRET VANDALINA WASSAUGUS WAS	100

9.5	Power series	158
9.6	The characteristic-function method	163
9.7	Orthogonal-function expansions	169
9.8	Diagonal processes	177
9.9	Conclusion	183
10.	Timing extraction for baseband digital transmission	186
10.1	Introduction	186
10.2	An apparent paradox	187
10.3	Spectral symmetry in digital signals	188
10.4	Recovery of a jitter-free timing signal	189
10.5	Statistical properties of the PAM signal and standing	
	wave	193
10.6	Conclusions	197
11.	Quantising noise spectra	199
11.1	Introduction	199
11.2	Mathematical model of a sampled quantiser	201
11.3	Comparison between theoretical and experimental results	202
11.4		203
11.5	Hyper-Nyquist sampling and coloured input spectra	206
11.6	Asymptotic analysis of quantiser intermodulation terms Summary and conclusions	209
11.0	Summary and conclusions	215
12.	Numerical calculation of intermodulation products pro-	
	duced by a memoryless non-linearity	218
12.1	Introduction	218
12.2	The calculation procedure and associated mathematics	219
12.3	Applications of the technique	221
12.4	Relationships with other methods	229
12.5	Conclusions	231
		201
13.	Intermodulation in single-channel per carrier satellite	
	communication systems	234
13.1	Introduction	234
13.2	Mathematical modelling for intermodulation	1.0
	calculations	236
13.3	Particular problems related to SCPC companded fm	242
13.4	Intermodulation noise in voice activated SCPC com-	
	panded fm channels	244

PART 4 DIGITAL LINE TRANSMISSION

14.	Representation and analysis of digital line codes	249
14.1	Block codes	249
14.2	The sequential machine model	250
14.3	First order statistics	253
14.4	Review of spectral theory	255
14.5	Digital signal without block structure	258
14.6	Block structure: general theory (I)	261
14.7	Block structure: an introductory example	264
14.8	Block structure: general theory (II)	268
14.9	Other statistics for digital line signals	270
15.	Power spectral density characterisation of digital trans- mission codes	
15.1	Introduction	272
15.2	Computational procedure	273
15.3	Analysis of specific line codes	278
15.4	Concluding remarks	296
16.	Design of a 7B8B line code with improved error monitor- ing capabilities	301
16.1	Introduction	301
16.2	Variable period even mark parity error detection	302
16.3	7B8B state transition diagram	303
16.4	Combination of the 7B8B code and mark parity error	000
10.4	detection	305
16.5	Conclusion	312
17.	A Hermite series for error probability calculation in	
211	digital line systems	319
17.1	Introduction	319
17.2	The phenomena	320
17.3	Theory	320
17.4	Practical examples	327
17.5	Conclusions	336
		100000

338

Index