CONTENTS

	Preface	хi
1	Physiological introduction	1
1.1	Anatomy, wall structure and mechanical properties	2
1.1.1	The heart	3
1.1.2	The systemic arteries	9
1.1.3	The pulmonary arteries	22
1.1.4	The veins	25
1.1.5	The blood	29
1.2	The physiological relevance of fluid mechanics	31
1.2.1	Blood pressure and transmural pressure	31
1.2.2	Unsteady pressures	33
1.2.3	Velocity waveforms	36
1.2.4	Velocity profiles	42
1.2.5	Disturbed or turbulent flow	48
1.2.6	Wall shear stress and arterial disease	51
1.2.7	Korotkoff sounds	55
1.3	Fluid mechanics of the left ventricle	57
1.3.1	The mitral valve	57
1.3.2	The aortic valve	60
1.3.3	The dynamics of left ventricular ejection	62
1.3.4	The case of a spherical ventricle	67
2	Propagation of the pressure pulse	72
2.1	One-dimensional theory, uniform tube, inviscid fluid	72
2.1.1	Basic theory	72
2.1.2	Comparison with experiment	74
2.1.3	Attenuation	77
2.1.4	Non-linear effects	79
2.2	Two-dimensional theory, uniform tube, viscous fluid	87
2.2.1	Isotropic, elastic walls; no wall inertia, no initial stresses, no	
	tethering	93
2.2.2	The effect of longitudinal tethering	95
2.2.3	The physiological pressure pulse (summary)	98

2.2.4	Flow-rate and wall shear	99
2.3	Effects of taper and branchings (linear theory)	101
2.3.1	Taper	102
2.3.2	Isolated wave reflections	106
2.3.3	Multiple wave reflections	109
2.4	Non-linear models of a complete arterial pathway	114
3	Flow patterns and wall shear stress in arteries	
	I Straight tubes	126
3.1	The difficulty of measuring wall shear stress	126
3.1.1	The need for a good frequency response	126
3.1.2	The limitations of the hot-film anemometer	131
3.2	Entry flow in a straight tube	136
3.2.1	Steady flow	137
3.2.2	Non-reversing unsteady flow	139
3.2.3	Reversing flow	149
4	Flow patterns and wall shear stress in arteries	
	II Curved tubes	160
4.1	Fully developed steady flow, $\delta \ll 1$	163
4.1.1	Small D	165
4.1.2	Intermediate D	168
4.1.3	Large D	172
4.2	Fully developed oscillatory flow, $\delta \ll 1$	177
4.2.1	Zero mean pressure gradient	178
4.2.2	Non-zero mean pressure gradient	183
4.3	Fully developed unsteady flow starting from rest	192
4.3.1	Uniform curvature	193
4.3.2	Slowly varying curvature	199
4.4	Entry flow with a flat entry profile	203
4.4.1	Uniform curvature	207
4.4.2	Slowly varying curvature	213
4.4.3	Experiments	218
4.5	Steady entry flow with a parabolic entry profile	224
5	Flow patterns and wall shear stress in arteries	
	III Branched tubes and flow instability	235
5.1	Flow in symmetric bifurcations	235
5.1.1	Model experiments	235
5.1.2	Theory	249
5.2	Flow in asymmetric bifurcations	260
5.2.1	Model experiments	260
5.2.2	Effect of a weak branch on flow in the parent tube	269

5.2.3	Flow into a very small, very weak branch	276
5.3	The instability of flow in the aorta	291
6	Flow in collapsible tubes	301
6.1	Physiological and experimental background	301
6.1.1	Physiological phenomena	301
6.1.2	Model experiments	302
6.1.3	Mechanisms of Korotkoff sounds	308
6.2	Viscous flow in slowly varying collapsible tubes	316
6.2.1	Lubrication theory and the effect of inertia	318
6.2.2	Application to collapsible tubes	324
6.3	A lumped-parameter model for self-excited oscillations	335
6.3.1	Physical mechanisms	335
6.3.2	Mathematical formulation	340
6.3.3	Equilibrium states	349
6.3.4	Stability and oscillations	354
6.4	Other mechanisms of instability	362
	Appendix: Analysis of a hot-film anemometer	369
A .1	Introduction	369
A.2	The steady boundary layer solution	375
A.3	The unsteady boundary layer with non-reversing shear	378
A.3.1	Small x_1	378
A.3.2	Large x ₁	380
A.4	A hot-film in reversing flow	385
A.4.1	The shear on the probe	386
A.4.2	The heat transfer from the film	390
A.4.3	Comparison with experiment	396
A.5	Departures from boundary layer theory for a short hot-film	404
A.5.1	The leading edge	405
A.5.2	The trailing edge	412
A.6	Steady heat transfer from a very short hot-film	417
	References	423
	Index	439