Contents

UNIVERSIDAD NACIONAL DE ENTRE RI FACULTAD DE INGENIERI CENTRO DE MEDIOS BIBLIOTECA

Prej	face		pa	ge xi
1	Introduction			1
1	Nonlinear systems, bifurcations and symmetry breaking			1
2	The origin of bifurcation theory			3
3	A turning point			6
4	A transcritical bifurcation			10
5	A pitchfork bifurcation			13
6	A Hopf bifurcation			19
7	Nonlinear oscillations of a conservative system			22
8	Difference equations			28
9	An experiment on statics			35
	ther reading			37
	Problems			38
2	Classification of bifurcations of equilibrium points			48
1	Introduction			48
2	Classification of bifurcations in one dimension			49
3	Imperfections			55
4	Classification of bifurcations in higher dimensions			59
Furi	ther reading			63
	blems			63
3	Difference equations			68
1	The stability of fixed points			68
2	Periodic solutions and their stability			72
3	Attractors and volume			74
18.0	3.1 Attractors			74
	3.2 Volume			80
4	The logistic equation			81
5	Numerical and computational methods			94
6	Some two-dimensional difference equations			96
7	Iterated maps of the complex plane			103
Fur	ther reading			109
	blems			109

Contents

4	Some special topics	125
1	Cantor sets	125
2	Dimension and fractals	127
3	Renormalization group theory	132
	3.1 Introduction	132
	3.2 Feigenbaum's theory of scaling	135
4	Liapounov exponents	140
Fu	rther reading	143
Pro	bblems	144
5	Ordinary differential equations	149
1	Introduction	149
2	Hamiltonian systems	153
3	The geometry of orbits	155
*4	The stability of a periodic solution	157
Fu	rther reading	161
Pro	bblems	161
6	Second-order autonomous differential systems	170
1	Introduction	170
2	Linear systems	172
3	The direct method of Liapounov	178
4	The Lindstedt-Poincaré method	181
5	Limit cycles	186
6	Van der Pol's equation	190
Fu	ther reading	197
Pro	blems	199
7	Forced oscillations	214
1	Introduction	214
2	Weakly nonlinear oscillations not near resonance:	
	regular perturbation theory	215
3	Weakly nonlinear oscillations near resonance	219
4	Subharmonics	225
Fur	ther reading	229
Pro	blems	230
8	Chaos	233
1	The Lorenz system	233
2	Duffing's equation with negative stiffness	246
*3	The chaotic break-up of a homoclinic orbit: Mel'nikov's method	251
4	Routes to chaos	261
5	Analysis of time series	264
Further reading		
Problems		

Contents			ix	
Appendix: Some partial-differential problems				283
Answers and hints to selected problems				290
Bibliography and author index				301
Motion picture and video index				309
Subject index				310