Contents

3861

PART ONE INTRODUCTORY CONCEPTS

1. Introduction to Process Control

- 1.1 Illustrative Example /3
- 1.2 Classification of Control Strategies /5
- 1.3 Process Control and Block Diagrams /7
- 1.4 Control and Modeling Philosophies /8
- 1.5 Analog or Digital Control? /10
- 1.6 Economic Justification of Process Control /12

2. Mathematical Modeling of Chemical Processes /16

- 2.1 The Rationale for Mathematical Modeling /16
- 2.2 Dynamic versus Steady-State Models /17
- 2.3 General Modeling Principles /18
- 2.4 Degrees of Freedom in Modeling /21
- 2.5 Models of Several Representative Processes /25
- 2.6 Solution of Dynamic Models and the Use of Digital Simulators /34

PART TWO TRANSIENT BEHAVIOR OF PROCESSES

3. Laplace Transforms /43

- 3.1 The Laplace Transform of Representative Functions /43
- 3.2 Solution of Differential Equations by Laplace Transform Techniques /49
- 3.3 Partial Fraction Expansion /51
- 3.4 Other Laplace Transform Properties /59
- 3.5 A Transient Response Example /63

4. The Transfer Function /75

- 4.1 Development of a Transfer Function /75
- 4.2 Properties of Transfer Functions /82
- 4.3 Linearization of Nonlinear Models /86

5. Dynamic Behavior of First-Order and Second-Order Systems $\,/100\,$

- 5.1 Standard Process Inputs /101
- 5.2 Response of First-Order Systems /105
- 5.3 Response of Integrating Process Units /110
- 5.4 Response of Second-Order Systems /113

6. Dynamic Response Characteristics of More Complicated Systems /130

- 6.1 Poles and Zeros and Their Effect on System Response /130
- 6.2 Time Delays /138
- 6.3 Approximation of Higher-Order Systems /145
- 6.4 Interacting and Noninteracting Processes /147
- 6.5 Staged Systems /149
- 6.6 Transfer Function Models for Distributed Systems /151
- 6.7 Multiple-Input, Multiple-Output (MIMO) Processes /154

7. Development of Empirical Dynamic Models from Step Response Data /164

- 7.1 Development of Models by Linear and Nonlinear Regression /164
- 7.2 Graphical Fitting of First-Order Models Using Step Tests /169
- 7.3 Fitting Second-Order Models Using Step Tests /173

PART THREE FEEDBACK CONTROL

8. Feedback Controllers /183

- 8.1 Stirred-Tank Heater Example /183
- 8.2 Controllers /184
- 8.3 Digital Versions of PID Controllers /195

9. Control System Instrumentation /199

- 9.1 Transducers and Transmitters /200
- 9.2 Final Control Elements /205
- 9.3 Transmission Lines /213
- 9.4 Accuracy in Instrumentation /214

10. Dynamic Behavior of Closed-Loop Control Systems /224

- 10.1 Block Diagram Representation /224
- 10.2 Closed-Loop Transfer Functions /228
- 10.3 Closed-Loop Responses of Simple Control Systems /235

11. Stability of Closed-Loop Control Systems /252

- 11.1 General Stability Criterion /254
- 11.2 Routh Stability Criterion /260
- 11.3 Direct Substitution Method /263
- 11.4 Root Locus Diagrams /264

12. Controller Design Based on Transient Response Criteria /272

- 12.1 Performance Criteria for Closed-Loop Systems /272
- 12.2 Direct Synthesis Method /273
- 12.3 Internal Model Control /278
- 12.4 Design Relations for PID Controllers /282
- 12.5 Comparison of Controller Design Relations /287

13. Controller Tuning and Troubleshooting Control Loops /294

- 13.1 Guidelines for Common Control Loops /294
- 13.2 Trial and Error Tuning /296
- 13.3 Continuous Cycling Method /297
- 13.4 Process Reaction Curve Method /302
- 13.5 Troubleshooting Control Loops /306

PART FOUR FREQUENCY RESPONSE METHODS

14. Frequency Response Analysis /313

- 14.1 Sinusoidal Forcing of a First-Order Process /313
- 14.2 Sinusoidal Forcing of an nth-Order Process /315
- 14.3 Bode Diagrams /319
- 14.4 Nyquist Diagrams /332

Development of Empirical Models from Frequency Response Data /339

- 15.1 General Rules for Graphically Fitting Transfer Function Models /339
- 15.2 Numerical Techniques for Estimating Transfer Function Models /343
- 15.3 The Use of Pulse Tests to Obtain Frequency Response Data /344

16. Controller Design Using Frequency Responses Criteria /358

- 16.1 Frequency Response Characteristics of Feedback Controllers /358
- 16.2 Bode and Nyquist Stability Criteria /362
- 16.3 Effect of Controllers on Open-Loop Frequency Response /367
- 16.4 Gain and Phase Margins /370
- 16.5 Closed-Loop Frequency Response /372
- 16.6 Computer-Aided Design of Feedback Controllers /376

PART FIVE ADVANCED CONTROL TECHNIQUES

17. Feedforward and Ratio Control /387

- 17.1 Introduction to Feedforward Control /388
- 17.2 Ratio Control /390
- 17.3 Feedforward Controller Design Based on Steady-State Models /393
- 17.4 Controller Design Based on Dynamic Models /397
- 17.5 Tuning Feedforward Controllers /404
- 17.6 Configurations for Feedforward-Feedback Control /407

18. Advanced Control Strategies /412

- 18.1 Cascade Control /412
- 18.2 Time-Delay Compensation and Inferential Control /419
- 18.3 Selective Control/Override Systems /424
- 18.4 Adaptive Control Systems /427
- 18.5 Statistical Quality Control /431
- 18.6 Expert Systems /434

19. Control of Multiple-Input, Multiple-Output Processes /443

- 19.1 Process Interactions and Control Loop Interactions /444
- 19.2 Pairing of Controlled and Manipulated Variables /453
- 19.3 Strategies for Reducing Control Loop Interactions /461
- 19.4 Decoupling Control Systems /463
- 19.5 Multivariable Control Techniques /468

20. Supervisory Control /474

- 20.1 Basic Requirements in Supervisory Control /474
- 20.2 Applications for Supervisory Control /476
- 20.3 The Formulation and Solution of Optimization Problems /478
- 20.4 Unconstrained Optimization /481
- 20.5 Constrained Optimization /488

PART SIX DIGITAL CONTROL TECHNIQUES

21. Digital Computer Control /501

- 21.1 Role for Digital Computer Systems in Process Control /502
- 21.2 Distributed Instrumentation and Control Systems /504
- 21.3 General Purpose Digital Data Acquisition and Control Hardware /508

- 21.4 Digital Control Software /515
- 21.5 A Table-Driven PID Controller /518
- 21.6 Programmable Logic Controllers and Batch Process Control /520

22. Sampling and Filtering of Continuous Measurements /530

- 22.1 Sampling and Signal Reconstruction /530
- 22.2 Selection of the Sampling Period /533
- 22.3 Signal Processing and Data Filtering /538
- 22.4 Comparison of Analog and Digital Filters /542
- 22.5 Effect of Filter Selection on Control System Performance /545

23. Development of Discrete-Time Models /549

- 23.1 Finite Difference Models /549
- 23.2 Exact Discretization for Linear Systems /552
- 23.3 Higher-Order Systems /553
- 23.4 Fitting Discrete-Time Equations to Process Data /553

24. Dynamic Response of Discrete-Time Systems /559

- 24.1 The z-Transform /559
- 24.2 Inversion of z-Transforms /566
- 24.3 The Pulse Transfer Function /571
- 24.4 Relating Pulse Transfer Functions to Difference Equations /573
- 24.5 Effect of Pole and Zero Locations /581
- 24.6 Conversion between Laplace and z-Transforms /583

25. Analysis of Sampled-Data Control Systems /590

- 25.1 Open-Loop Block Diagram Analysis /590
- 25.2 Development of Closed-Loop Transfer Functions /598
- 25.3 Stability of Sampled-Data Control Systems /602

26. Design of Digital Controllers /614

- 26.1 Digital PID Controller /614
- 26.2 Selection of Digital PID Controller Parameters /618
- 26.3 Direct Synthesis Methods /622
- 26.4 Digital Feedforward Control /634
- 26.5 Combined Load Estimation and Time-Delay Compensation /637

27. Predictive Control Techniques /649

- 27.1 Discrete Convolution Models /649
- 27.2 z-Transform Analysis of Convolution Models /652
- 27.3 Matrix Forms for Predictive Models /654
- 27.4 Controller Design Method /656
- 27.5 Tuning the Predictive Controller /661
- 27.6 Predictive Control of MIMO Systems /666

PART SEVEN PROCESS CONTROL STRATEGIES

28. The Art of Process Control /673

- 28.1 The Influence of Process Design on Process Control /673
- 28.2 Degrees of Freedom for Process Control (Revisited) /677
- 28.3 Control System Design Considerations /681
- 28.4 Singular Value Analysis /689
- 28.5 Industrial Case Study: Three-Reactor System /694

APPENDIX: Professional Software for Process Control /701

INDEX /705