

UNIT Introduction to Physiology: The Cell and General Physiology CHAPTER 1 Functional Organization of the Human Body and Control of the "Internal Environment" 2 Cells as the Living Units of the Body 2 Extracellular Fluid—The Internal Environment 2 "Homeostatic" Mechanisms of the Major Functional Systems 3 Homeostasis 3 Extracellular Fluid Transport System—The Circulatory System 3 Origin of Nutrients in the Extracellular Fluid 3 Removal of Metabolic End Products 4 Regulation of Body Functions 4 Reproduction 4 Control Systems of the Body 4 Examples of Control Mechanisms 5 Characteristics of Control Systems 6 Summary—Automaticity of the Body 7 CHAPTER 2 The Cell and Its Function 9 Organization of the Cell 9 Physical Structure of the Cell 10

Membranous Structures of the Cell 10 Cytoplasm and Its Organelles 12 Nucleus 14 Nuclear Membrane 15 Nucleoli and Formation of Ribosomes 15 Comparison of the Animal Cell with Precellular Forms of Life 15 Functional Systems of the Cell 16 Ingestion by the Cell—Endocytosis 16 Digestion of Pinocytic and Phagocytic Foreign Substances in the Cell—Function of the Lysosomes 17 Synthesis and Formation of Cellular Structures by the Endoplasmic Reticulum and the Golgi Apparatus 18 Extraction of Energy from Nutrients—Function of the Mitochondria—19 Locomotion of Cells 21

CHAPTER 3

Genetic Control of Protein Synthesis, Cell Function, and Cell Reproduction 24

The Genes 24 Genetic Code 25 The DNA Code Is Transferred to an RNA Code—The Process of Transcription 25 Synthesis of RNA 26 Assembly of the RNA Molecule from Activated Nucleotides Using the DNA Strand as a Template—The Process of Transcription 27 Messenger RNA—The Codons 27 Transfer RNA—The Anticodons 27 Ribosomal RNA 28 Formation of Proteins on the Ribosomes—The Process of "Translation" 29 Synthesis of Other Substances in the Cell 30 Control of Genetic Function and Biochemical Activity in Cells 30 Genetic Regulation 30 Control of Intracellular Function by Enzyme Regulation 32 The DNA-Genetic System Also Controls Cell Reproduction 32 Cell Reproduction Begins with Replication of the **DNA** 33 Chromosomes and Their Replication 34 Cell Mitosis 34 Control of Cell Growth and Cell Reproduction 35 Cell Differentiation 35

UNIT Membrane Physiology, Nerve, and Muscle

CHAPTER 4 Transport of Substances Through the Cell Membrane 40

The Lipid Barrier of the Cell Membrane and Cell Membrane Transport Proteins 40

Diffusion 40

Cancer 36

Diffusion Through the Cell Membrane 41 Diffusion Through Protein Channels and "Gating" of These Channels 42

Facilitated Diffusion 43

Factors That Affect Net Rate of Diffusion 44

Osmosis Across Selectively Permeable Membranes—"Net Diffusion" of Water 45

Active Transport 47

Primary Active Transport 47

Secondary Active Transport—Co-transport and Counter-

transport 49

Active Transport Through Cellular Sheets 49

Muscle Action Potential 83

Fiber by Way of a Transverse Tubule System 84

Excitation-Contraction Coupling 84

Spread of the Action Potential to the Interior of the Muscle

Membrane Potentials and Action Potentials 52	Transverse Tubule—Sarcoplasmic Reticulum System 84 Release of Calcium Ions by the Sarcoplasmic Reticulum 85
Basic Physics of Membrane Potentials 52	of conclusion of the Barcoptasmic Reneutum 05
Membrane Potentials Caused by Diffusion 52	CHAPTER 8
Measuring the Membrane Potential 53	Contraction and Excitation of Smooth Muscle 87
Resting Membrane Potential of Nerves 54	Contraction of Smooth Muscle 87
Origin of the Normal Resting Membrane Potential 54	Types of Smooth Muscle 87
Nerve Action Potential 55	Contractile Mechanism in Smooth Muscle 87
Voltage-Gated Sodium and Potassium Channels 56	Regulation of Contraction by Calcium Ions 89
Summary of the Events That Cause the Action Potential 58	Neural and Hormonal Control of Smooth Muscle
Roles of Other Ions During the Action Potential 59	Contraction 90
Initiation of the Action Potential 59	Neuromuscular Junctions of Smooth Muscle 90
Propagation of the Action Potential 59	Membrane Potentials and Action Potentials in Smooth
Re-establishing Sodium and Potassium Ionic Gradients After	Muscle 90 Effect of Local Tissue Factors at H
Action Potentials Are Completed—Importance of Energy	Effect of Local Tissue Factors and Hormones to Cause Smooth Muscle Contraction Without Action Between 192
Metabolism 60	Smooth Muscle Contraction Without Action Potentials 92 Source of Calcium Ions That Cause Contraction:
Plateau in Some Action Potentials 61	(1) Through the Cell Membrane and (2) from the
Rhythmicity of Some Excitable Tissues—Repetitive Discharge 61	Sarcoplasmic Reticulum 93
Special Aspects of Signal Transmission in Nerve Trunks 62	Sarcopiasmic Reneation 75
Excitation—The Process of Eliciting the Action Potential 63	UNIT
"Refractory Period" After an Action Potential During	The Heart
Which a New Stimulus Cannot Be Elicited 64	Department Language and Language
Inhibition of Excitability—"Stabilizers" and Local	CHAPTER 9
Anesthetics 64	Heart Muscle; The Heart as a Pump 96
Recording Membrane Potentials and Action Potentials 64	Physiology of Cardiac Muscle 96
	Physiologic Anatomy of Cardiac Muscle 96
CHAPTER 6	Action Potentials in Cardiac Muscle 97
Contraction of Skeletal Muscle 67	The Cardiac Cycle 99
Physiologic Anatomy of Skeletal Muscle 67	Diastole and Systole 99
The Skeletal Muscle Fiber 67	Relationship of the Electrocardiogram to the Cardiac
General Mechanism of Muscle Contraction 68	Cycle 100
Molecular Mechanism of Muscle Contraction 70	Function of the Atria as Primer Pumps 100
Molecular Characteristics of the Contractile Filaments 70	Function of the Ventricles as Pumps 100
Effect of Actin and Myosin Filament Overlap on Tension	Emptying of the Ventricles During Systole 100 Function of the Valves 101
Developed by the Contracting Muscle 72	The Aortic Pressure Curve 101
Relation of Velocity of Contraction to Load 73	Relationship of the Heart Sounds to Heart Pumping 102
Energetics of Muscle Contraction 74	Work Output of the Heart 102
Work Output During Muscle Contraction 74	Chemical Energy Required for Cardiac Contraction: Oxygen
Sources of Energy for Muscle Contraction 74	Utilization by the Heart 103
Characteristics of Whole Muscle Contraction 74 Machanics of Skaletal Muscle Contraction 76	Regulation of Heart Pumping 103
Mechanics of Skeletal Muscle Contraction 76 Remodeling of Muscle to Match Function 77	Intrinsic Regulation of Heart Pumping—The Frank-Starling
Rigor Mortis 78	Mechanism 103
Rigor Moins 10	Effect of Potassium and Calcium Ions on Heart
CHAPTER 7	Function 106
Excitation of Skeletal Muscle: A. Neuromuscular	Effect of Temperature on Heart Function 106
Transmission and B. Excitation-Contraction	CHAPTER 10
Coupling 80	Rhythmical Excitation of the Heart 107
Transmission of Impulses from Nerves to Skeletal Muscle	
Fibers: The Neuromuscular Junction 80	Specialized Excitatory and Conductive System of the Heart 107
Secretion by Acetylcholine by the Nerve Terminals 80	
Molecular Biology of Acetylcholine Formation and	Sinus Node (Sinoatrial Node) 107 Internodal Pathways and Transmission of the Cardiac
Release 82	Impulse Through the Atria 109
Drugs That Affect Transmission at the Neuromuscular	Atrioventricular Node, and Delay of Impulse Conduction
Junction 83	from the Atria to the Ventricles 109
Myasthenia Gravis 83	Rapid Transmission in the Ventricular Purkinje System 109

Transmission of the Cardiac Impulse in the Ventricular

Summary of the Spread of the Cardiac Impulse Through the

Muscle 110

Heart 110

Control of Excitation and Conduction in the Heart 111

The Sinus Node as the Pacemaker of the Heart 111

Role of the Purkinje System in Causing Synchronous

Contraction of the Ventricular Muscle 111

Control of Heart Rhythmicity and Impulse Conduction by
the Cardiac Nerves: The Sympathetic and

Parasympathetic Nerves 112

CHAPTER 11

The Normal Electrocardiogram 114

Characteristics of the Normal Electrocardiogram 114

Depolarization Waves Versus Repolarization Waves 114

Relationship of Atrial and Ventricular Contraction to the

Waves of the Electrocardiogram 115

Voltage and Time Calibration of the

Electrocardiogram 115

Methods for Recording Electrocardiograms 116

Flow of Current Around the Heart During the Cardiac Cycle 116

Recording Electrical Potentials from a Partially Depolarized Mass of Syncytial Cardiac Muscle 116 Flow of Electrical Currents in the Chest Around the

Heart 116

Pen Recorder 116

Electrocardiographic Leads 117

Three Bipolar Limb Leads 117

Chest Leads (Precordial Leads) 118

Augumented Unipolar Limb Leads 119

CHAPTER 12

Electrocardiographic Interpretation of Cardiac Muscle and Coronary Blood Flow Abnormalities: Vectorial Analysis 120

Principles of Vectorial Analysis of Electrocardiograms 120

Use of Vectors to Represent Electrical Potentials 120

Denoting the Direction of a Vector in Terms of

Degrees 120

Axis of Each of the Standard Bipolar Leads and for Each Unipolar Limb Lead 120

Vectorial Analysis of Potentials Recorded in Different Leads 121

Vectorial Analysis of the Normal Electrocardiogram 122

Vectors That Occur at Successive Intervals During

Depolarization of the Ventricles—The QRS Complex 122

Electrocardiogram During Repolarization—The T

Wave 123

Depolarization of the Atria—The P Wave 124 Vectorcardiogram 124

Mean Electrical Axis of the Ventricular QRS—And Its Significance 125

Determining the Electrical Axis from Standard Lead Electrocardiograms 125

Abnormal Ventricular Conditions That Cause Axis Deviation 125

Conditions That Cause Abnormal Voltages of the QRS Complex 127

Increased Voltage in the Standard Bipolar Limb Leads 127
Decreased Voltage of the Electrocardiogram 127

Prolonged and Bizarre Patterns of the QRS Complex 128

Prolonged QRS Complex as a Result of Cardiac

Hypertrophy or Dilatation 128

Prolonged QRS Complex Resulting from Purkinje System Blocks 128

Conditions That Cause Bizarre QRS Complexes 128

Current of Injury 128

Effect of Current of Injury on the QRS Complex 128
The J Point—The Zero Reference Potential for Analyzing
Current of Injury 129

Coronary Ischemia as a Cause of Current of Injury 130
Abnormalities in the T Wave 132

Effect of Slow Conduction of the Depolarization Wave on the Characteristics of the T Wave 132

Prolonged Depolarization in Portions of the Ventricular Muscle as a Cause of Abnormalities in the T Wave 132

CHAPTER 13

Cardiac Arrhythmias and Their Electrocardiographic Interpretation 134

Abnormal Sinus Rhythms 134

Tachycardia 134

Bradycardia 134

Sinus Arrhythmia 134

Abnormal Rhythms That Result from Impulse Conduction Block 135

Sinoatrial Block 135

Atrioventricular Block 135

Incomplete Intraventricular Block—Electrical

Alternans 136

Premature Contractions 136

Premature Atrial Contractions 137

A-V Nodal or A-V Bundle Premature Contractions 137

Premature Ventricular Contractions 137

Paroxysmal Tachycardia 138

Atrial Paroxysmal Tachycardia 138

Ventricular Paroxysmal Tachycardia 138

Ventricular Fibrillation 138

Phenomenon of Re-entry—"Circus Movements" as the Basis for Ventricular Fibrillation 139

Atrial Fibrillation 141

Atrial Flutter 142

Cardiac Arrest 142

UNIT IV The Circulation

CHAPTER 14

Overview of the Circulation; Medical Physics of Pressure, Flow, and Resistance 144

Physical Characteristics of the Circulation 144 Basic Theory of Circulatory Function 146

Interrelationships Among Pressure, Flow, and Resistance 146

Blood Flow 147

Blood Pressure 148

Resistance to Blood Flow 149

Effects of Pressure on Vascular Resistance and Tissue Blood Flow 151

CHAPTER 15

Vascular Distensibility, and Functions of the Arterial and Venous Systems 152

Vascular Distensibility 152

Vascular Compliance (or Capacitance) 152

Volume-Pressure Curves of the Arterial and Venous Circulations 152

Delayed Compliance (Stress-Relaxation) of Vessels 153

Arterial Pressure Pulsations 153

Transmission of Pressure Pulses to the Peripheral Arteries 154

Clinical Methods for Measuring Systolic and Diastolic Pressures 155

Veins and Their Functions 156

Venous Pressures—Right Atrial Pressure (Central Venous Pressure) and Peripheral Venous Pressures 156
Blood Reservoir Function of the Veins 160

CHAPTER 16

The Microcirculation and the Lymphatic System: Capillary Fluid Exchange, Interstitial Fluid, and Lymph Flow 162

Structure of the Microcirculation and Capillary System 162

Flow of Blood in the Capillaries—Vasomotion 163

Average Function of the Capillary System 163

Exchange of Nutrients and Other Substances Between the Blood and Interstitial Fluid 164

Diffusion Through the Capillary Membrane 164

The Interstitium and Interstitial Fluid 165

Proteins in the Plasma and Interstitial Fluid Are Especially Important in Controlling Plasma and Interstitial Fluid Volumes 166

Capillary Pressure 166

Interstitial Fluid Pressure 167

Plasma Colloid Osmotic Pressure 168

Interstitial Fluid Colloid Osmotic Pressure 169

Exchange of Fluid Volume Through the Capillary Membrane 169

Starling Equilibrium for Capillary Exchange 170

Lymphatic System 170

Lymph Channels of the Body 170

Formation of Lymph 171

Rate of Lymph Flow 172

Role of the Lymphatic System in Controlling Interstitial Fluid Protein Concentration, Interstitial Fluid Volume, and Interstitial Fluid Pressure 173

CHAPTER 17

Local Control of Blood Flow by the Tissues; and Humoral Regulation 175

Local Control of Blood Flow in Response to Tissue Needs 175

Mechanisms of Blood Flow Control 175

Acute Control of Local Blood Flow 176

Long-Term Blood Flow Regulation 179

Development of Collateral Circulation—A Phenomenon of Long-Term Local Blood Flow Regulation 180

Humoral Regulation of the Circulation 181

Vasoconstrictor Agents 181

Vasodilator Agents 181

Effects of Ions and Other Chemical Factors on Vascular Control 182

CHAPTER 18

Nervous Regulation of the Circulation, and Rapid Control of Arterial Pressure 184

Nervous Regulation of the Circulation 184

Autonomic Nervous System 184

Role of the Nervous System for Rapid Control of Arterial Pressure 187

Increase in Arterial Pressure During Muscle Exercise and Other Types of Stress 188

Reflex Mechanisms for Maintaining Normal Arterial Pressure 188

Central Nervous System Ischemic Response—Control of Arterial Pressure by the Brain's Vasomotor Center in Response to Diminished Brain Blood Flow 191

Special Features of Nervous Control of Arterial Pressure 192
Role of the Skeletal Nerves and Skeletal Muscles in
Increasing Cardiac Output and Arterial Pressure 192
Respiratory Waves in the Arterial Pressure 193
Arterial Pressure "Vasomotor" Waves—Oscillation of the
Pressure Reflex Control Systems 193

CHAPTER 19

Dominant Role of the Kidney in Long-Term Regulation of Arterial Pressure and in Hypertension: The Integrated System for Pressure Control 195

The Renal-Body Fluid System for Arterial Pressure Control 195

Quantitation of Pressure Diuresis as a Basis for Arterial Pressure Control 195

Hypertension (High Blood Pressure): This Is Often Caused by Excess Extracellular Fluid Volume 199

The Renin-Angiotensin System: Its Role in Pressure Control and in Hypertension 201

Components of the Renin-Angiotensin System 201
Types of Hypertension in Which Angiotensin Is Involved:
Hypertension Caused by a Renin-Secreting Tumor or by

Other Types of Hypertension Caused by Combinations of Volume-Loading and Vasoconstriction 205

"Essential Hypertension" in Human Beings 205

Infusion of Angiotensin II 203

Summary of the Integrated, Multifaceted System for Arterial Pressure Regulation 207

CHAPTER 20

Cardiac Output, Venous Return, and Their Regulation 210

Normal Values for Cardiac Output at Rest and During Activity 210

Control of Cardiac Output by Venous Return—Role of the Frank-Starling Mechanism of the Heart 210

Cardiac Output Regulation Is the Sum of Blood Flow Regulation in All the Local Tissues of the Body—Tissue Metabolism Regulates Most Local Blood Flow 211

The Heart Has Limits for the Cardiac Output That It Can Achieve 212

What Is the Role of the Nervous System in Controlling Cardiac Output? 212

Pathologically High and Pathologically Low Cardiac Outputs 213 High Cardiac Output Is Almost Always Caused by Reduced Total Peripheral Resistance 213

Low Cardiac Output 214

A More Quantitative Analysis of Cardiac Output Regulation 214

Cardiac Output Curves Used in Quantitative Analysis 215 Venous Return Curves 215

Analysis of Cardiac Output and Right Atrial Pressure, Using Simultaneous Cardiac Output and Venous Return Curves 218

Methods for Measuring Cardiac Output 220

Pulsatile Output of the Heart as Measured by an

Electromagnetic or Ultrasonic Flowmeter 220

Measurement of Cardiac Output by the Oxygen Fick

Method 220

Indicator Dilution Method 221

CHAPTER 21

Muscle Blood Flow and Cardiac Output During Exercise; the Coronary Circulation and Ischemic Heart Disease 223

Blood Flow in Skeletal Muscle and Its Regulation During Exercise 223

Rate of Blood Flow Through the Muscles 223 Control of Blood Flow Through the Skeletal Muscles 223 Circulatory Readjustments During Exercise 224

Coronary Circulation 226

Physiologic Anatomy of the Coronary Blood Supply 226
Normal Coronary Blood Flow 226
Control of Coronary Blood Flow 227
Special Features of Cardiac Muscle Metabolism 228

Ischemic Heart Disease 229
Causes of Death After Acute Coronary Occlusion 230

Stages of Recovery from Acute Myocardial Infarction 231 Function of the Heart After Recovery from Myocardial Infarction 232

Pain in Coronary Disease 232 Surgical Treatment of Coronary Disease 233

CHAPTER 22

Cardiac Failure 235

Dynamics of the Circulation in Cardiac Failure 235

Acute Effects of Moderate Cardiac Failure 235

Chronic Stage of Failure–Fluid Retention Helps to

Compensate Cardiac Output 236

Summary of the Changes That Occur After Acute Cardiac

Failure—"Compensated Heart Failure" 237

Dynamics of Severe Cardiac Failure—Decompensated

Heart Failure 237

Unilateral Left Heart Failure 239

Low-Output Cardiac Failure—Cardiogenic Shock 239
Edema in Patients with Cardiac Failure 239

Cardiac Reserve 241

Appendix 241

Quantitative Graphical Method for Analysis of Cardiac Failure 241

CHAPTER 23

Heart Valves and Heart Sounds; Dynamics of Valvular and Congenital Heart Defects 245

Heart Sounds 245

Normal Heart Sounds 245

Valvular Lesions 247

Abnormal Circulatory Dynamics in Valvular Heart Disease 248

Dynamics of the Circulation in Aortic Stenosis and Aortic

Regurgitation 248

Dynamics of Mitral Stenosis and Mitral Regurgitation 248
Circulatory Dynamics During Exercise in Patients with
Valvular Lesions 249

Abnormal Circulatory Dynamics in Congenital Heart Defects 249

Patent Ductus Arteriosus—A Left-to-Right Shunt 249 Tetralogy of Fallot—A Right-to-Left Shunt 251 Causes of Congenital Anomalies 251

Use of Extracorporeal Circulation During Cardiac Surgery 251 Hypertrophy of the Heart in Valvular and Congenital Heart Disease 252

CHAPTER 24

Circulatory Shock and Physiology of Its Treatment 253

Physiologic Causes of Shock 253
Circulatory Shock Caused by Decreased Cardiac
Output 253

Circulatory Shock That Occurs Without Diminished Cardiac Output 253

What Happens to the Arterial Pressure in Circulatory Shock? 253

Tissue Deterioration Is the End Stage of Circulatory Shock, Whatever the Cause 253

Stages of Shock 254

Shock Caused by Hypovolemia—Hemorrhagic Shock 254

Relationship of Bleeding Volume to Cardiac Output and

Arterial Pressure 254

Progressive and Nonprogressive Hemorrhagic Shock 255 Irreversible Shock 258

Hypovolemic Shock Caused by Plasma Loss 259 Hypovolemic Shock Caused by Trauma 259

Neurogenic Shock—Increased Vascular Capacity 259
Anaphylactic Shock and Histamine Shock 259

Septic Shock 260

Physiology of Treatment in Shock 260

Replacement Therapy 260

Treatment of Shock with Sympathomimetic Drugs— Sometimes Useful, Sometimes Not 261 Other Therapy 261

impulatory Armost 261

Circulatory Arrest 261

Effect of Circulatory Arrest on the Brain 261

UNIT **V**

The Kidneys and Body Fluids

CHAPTER 25

The Body Fluid Compartments: Extracellular and Intracellular Fluids; Interstitial Fluid and Edema 264

Fluid Intake and Output Are Balanced During Steady-State Conditions 264 Daily Intake of Water 264
Daily Loss of Body Water 264
Body Fluid Compartments 265
Intracellular Fluid Compartment 265
Extracellular Fluid Compartment 266
Blood Volume 266

Constituents of Extracellular and Intracellular Fluids 266

Ionic Compositions of Plasma and Interstitial Fluid Are
Similar 266

Important Constituents of the Intracellular Fluid 267
Measurement of Fluid Volumes in the Different Body Fluid
Compartments; the Indicator-Dilution Principle 268

Determination of Volumes of Specific Body Fluid Compartments 268

Regulation of Fluid Exchange and Osmotic Equilibria Between Intracellular and Extracellular Fluid 269

Basic Principles of Osmosis and Osmotic Pressure 269
Osmotic Equilibrium Is Maintained Between Intracellular and
Extracellular Fluids 271

Volumes and Osmolalities of Extracellular and Intracellular Fluid in Abnormal States 272

Effect of Adding Saline Solution to the Extracellular Fluid 272

Glucose and Other Solutions Administered for Nutritive Purposes 273

Clinical Abnormalities of Fluid Volume Regulation: Hyponatremia and Hypernatremia 273

Causes of Hyponatremia: Excess Water or Loss of Sodium 274

Causes of Hypernatremia: Water Loss or Excess Sodium 274

Edema: Excess Fluid in the Tissues 274

Intracellular Edema 274

Extracellular Edema 274

Safety Factors That Normally Present E

Safety Factors That Normally Prevent Edema 276
Fluids in the "Potential Spaces" of the Body 277

CHAPTER 26

Urine Formation by the Kidneys: I. Glomerular Filtration, Renal Blood Flow, and Their Control 279

Multiple Functions of the Kidneys in Homeostasis 279 Physiologic Anatomy of the Kidneys 280

General Organization of the Kidneys and Urinary Tract 280

Renal Blood Supply 281

The Nephron Is the Functional Unit of the Kidney 281

Urine Formation Results from Glomerular Filtration, Tubular Reabsorption, and Tubular Secretion 282

Filtration, Reabsorption, and Secretion of Different Substances 283

Glomerular Filtration—The First Step In Urine Formation 284

Composition of the Glomerular Filtrate 284 GFR Is About 20 Per Cent of the Renal Plasma Flow 284 Glomerular Capillary Membrane 284

Determinants of the Glomerular Filtration Rate 286

Increased Glomerular Capillary Filtration Coefficient (K_f)

Increases GFR 286

Increased Bowman's Capsule Hydrostatic Pressure Decreases GFR 287 Increased Glomerular Capillary Colloid Osmotic Pressure Decreases GFR 287

Increased Glomerular Capillary Hydrostatic Pressure Increases GFR 287

Renal Blood Flow 288

Determinants of Renal Blood Flow 288

Blood Flow in the Vasa Recta of the Renal Medulla Is Very Low Compared with Flow in the Renal Cortex 289

Physiologic Control of Glomerular Filtration and Renal Blood Flow 289

Sympathetic Nervous System Activation Decreases GFR 289

Hormonal and Autacoid Control of Renal Circulation 289 Autoregulation of GFR and Renal Blood Flow 290

Importance of GFR Autoregulation in Preventing Extreme Changes in Renal Excretion 291

Role of Tubuloglomerular Feedback in Autoregulation of GFR 291

Myogenic Autoregulation of Renal Blood Flow and GFR 293

Other Factors That Increase Renal Blood Flow and GFR: High Protein Intake and Increased Blood Glucose 293

CHAPTER 27

Urine Formation by the Kidneys: II. Tubular Processing of the Glomerular Filtrate 295

Reabsorption and Secretion by the Renal Tubules 295

Tubular Reabsorption Is Selective and Quantitatively

Large 295

Tubular Reabsorption Includes Passive and Active Mechanisms 295

Active Transport 296

Passive Water Reabsorption by Osmosis Is Coupled Mainly to Sodium Reabsorption 299

Reabsorption of Chloride, Urea, and Other Solutes by Passive Diffusion 300

Reabsorption and Secretion Along Different Parts of the Nephron 300

Proximal Tubular Reabsorption 300

Solute and Water Transport in the Loop of Henle 302 Distal Tubule 303

Late Distal Tubule and Cortical Collecting Tubule 303 Medullary Collecting Duct 304

Summary of Concentrations of Different Solutes in the Different Tubular Segments 304

Regulation of Tubular Reabsorption 305

Glomerulotubular Balance—The Ability of the Tubules to Increase Reabsorption Rate in Response to Increased Tubular Load 305

Peritubular Capillary and Renal Interstitial Fluid Physical Forces 306

Effect of Arterial Pressure on Urine Output—The Pressure-Natriuresis and Pressure-Diuresis Mechanisms 308 Hormonal Control of Tubular Reabsorption 308

Use of Clearance Methods to Quantify Kidney Function 309

PAH Clearance Can Be Used to Estimate Renal Plasma

Flow 311

Filtration Fraction Is Calculated from GFR Divided by Plasma Renal Flow 311

Calculation of Tubular Reabsorption or Secretion from Renal Clearances 311

CHAPTER 28

Regulation of Extracellular Fluid Osmolarity and Sodium Concentration 313

The Kidney Excretes Excess Water by Forming a Dilute Urine 313

Antidiuretic Hormone Controls Urine Concentration 313 Renal Mechanisms for Excreting a Dilute Urine 313

The Kidney Conserves Water by Excreting a Concentrated Urine 315

Obligatory Urine Volume 315

Requirements for Excreting a Concentrated Urine—High ADH Levels and Hyperosmotic Renal Medulla 315

The Countercurrent Mechanism Produces a Hyperosmotic Renal Medullary Interstitium 315

Role of the Distal Tubule and Collecting Ducts in Excreting a Concentrated Urine 317

Urea Contributes to Hyperosmotic Renal Medullary Interstitium and to a Concentrated Urine 318

Countercurrent Exchange in the Vasa Recta Preserves Hyperosmolarity of the Renal Medulla 319

Summary of Urine Concentrating Mechanism and Changes in Osmolarity in Different Segments of the Tubules 320

Quantifying Renal Urine Concentration and Dilution: "Free Water" and Osmolar Clearances 321

Disorders of Urinary Concentrating Ability 322

Control of Extracellular Fluid Osmolarity and Sodium Concentration 322

Estimating Plasma Osmolarity from Plasma Sodium Concentration 322

Osmoreceptor-ADH Feedback System 323

ADH Synthesis in Supraoptic and Paraventricular Nuclei of the Hypothalamus and ADH Release from the Posterior Pituitary 323

Cardiovascular Reflex Stimulation of ADH Release by Decreased Arterial Pressure and/or Decreased Blood Volume 324

Quantitative Importance of Cardiovascular Reflexes and Osmolarity in Stimulating ADH Secretion 324 Other Stimuli for ADH Secretion 324

Role of Thirst in Controlling Extracellular Fluid Osmolarity and Sodium Concentration 325

Central Nervous System Centers for Thirst 325 Stimuli for Thirst 325

Threshold for Osmolar Stimulus of Drinking 326
Integrated Responses of Osmoreceptor-ADH and Thirst
Mechanisms in Controlling Extracellular Fluid Osmolarity
and Sodium Concentration 326

Role of Angiotensin II and Aldosterone in Controlling Extracellular Fluid Osmolarity and Sodium Concentration 327

Salt-Appetite Mechanism for Controlling Extracellular Fluid Sodium Concentration and Volume 327

CHAPTER 29

Integration of Renal Mechanisms for Control of Blood Volume and Extracellular Fluid Volume; and Renal Regulation of Potassium, Calcium, Phosphate, and Magnesium 329

Control Mechanisms for Regulating Sodium and Water Excretion 329

Sodium Excretion Is Precisely Matched to Intake Under Steady-State Conditions 329 Sodium Excretion Is Controlled by Altering Glomerular Filtration or Tubular Sodium Reabsorption Rates 329

Importance of Pressure Natriuresis and Pressure Diuresis in Maintaining Body Sodium and Fluid Balance 330

Pressure Natriuresis and Diuresis Are Key Components of a Renal-Body Fluid Feedback for Regulating Body Fluid Volumes and Arterial Pressure 330

Precision of Blood Volume and Extracellular Fluid Volume Regulation 331

Distribution of Extracellular Fluid Between the Interstitial Spaces and Vascular System 332

Nervous and Hormonal Factors Increase the Effectiveness of Renal-Body Fluid Feedback Control 332

Sympathetic Nervous System Control of Renal Excretion: The Arterial Baroreceptor and Low-Pressure Stretch Receptor Reflexes 332

Role of Angiotensin II in Controlling Renal Excretion 333
Role of Aldosterone in Controlling Renal Excretion 334
Role of ADH in Controlling Renal Water Excretion 334
Role of Atrial Natriuretic Peptide in Controlling Renal
Excretion 335

Integrated Responses to Changes in Sodium Intake 335 Conditions That Cause Large Increases in Blood Volume and Extracellular Fluid Volume 335

Increased Blood Volume and Extracellular Fluid Volume Caused by Heart Diseases 335

Increased Blood Volume Caused by Increased Capacity of the Circulation 336

Conditions That Cause Large Increases in Extracellular Fluid Volume but with Normal Blood Volume 336

Nephrotic Syndrome—Loss of Plasma Proteins in the Urine and Sodium Retention by the Kidneys 336

Liver Cirrhosis—Decreased Synthesis of Plasma Proteins by the Liver and Sodium Retention by the Kidneys 336

Regulation of Potassium Excretion and Potassium

Concentration in the Extracellular Fluid 336

Regulation of Internal Potassium Distribution 337

Overview of Renal Potassium Excretion 338

Potassium Secretion in the Principal Cells of the Late Distal and Cortical Collecting Tubules 339

Summary of Factors That Regulate Potassium Secretion: Plasma Potassium Concentration, Aldosterone, Tubular Flow Rate, and Hydrogen Ion 339

Control of Renal Calcium Excretion and Extracellular Calcium Ion Concentration 342

Control of Calcium Excretion by the Kidneys 343

Regulation of Renal Phosphate Excretion 343

Control of Renal Magnesium Excretion and Extracellular Magnesium Ion Concentration 344

CHAPTER 30

Regulation of Acid-Base Balance 346

Hydrogen Ion Concentration Is Precisely Regulated 346
Acids and Bases—Their Definitions and Meanings 346
Defenses Against Changes in Hydrogen Ion Concentration:
Buffers, Lungs, and Kidneys 347

Buffering of Hydrogen Ions in the Body Fluids 347

The Bicarbonate Buffer System 348

Quantitative Dynamics of the Bicarbonate Buffer System 348

The Phosphate Buffer System 350
Proteins: Important Intracellular Buffers 350

Isohydric Principle: All Buffers in a Common Solution Are in Equilibrium with the Same Hydrogen Ion Concentration 350

Respiratory Regulation of Acid-Base Balance 351 Pulmonary Expiration of CO₂ Balances Metabolic Formation of CO_2 351

Increasing Alveolar Ventilation Decreases Extracellular Fluid Hydrogen Ion Concentration and Raises pH 351 Increased Hydrogen Ion Concentration Stimulates Alveolar Ventilation 351

Renal Control of Acid-Base Balance 352

Secretion of Hydrogen Ions and Reabsorption of Bicarbonate Ions by the Renal Tubule 353

Hydrogen Ions Are Secreted by Secondary Active Transport in the Early Tubular Segments 353

Filtered Bicarbonate Ions Are Reabsorbed by Interaction with Hydrogen Ions in the Tubules 354

Primary Active Secretion of Hydrogen Ions in the Intercalated Cells of Late Distal and Collecting Tubules 355

Combination of Excess Hydrogen Ions With Phosphate and Ammonia Buffers in the Tubule—A Mechanism for Generating New Bicarbonate Ions 355

The Phosphate Buffer System Carries Excess Hydrogen Ions into the Urine and Generates New Bicarbonate 356

Excretion of Excess Hydrogen Ions and Generation of New Bicarbonate by the Ammonia Buffer System 356

Quantifying Renal Acid-Base Excretion 357

Regulation of Renal Tubular Hydrogen Ion Secretion 357

Renal Correction of Acidosis—Increased Excretion of Hydrogen Ions and Addition of Bicarbonate Ions to the Extracellular Fluid 358

Acidosis Decreases the Ratio of HCO_3^-/H^+ in Renal Tubular Fluid 358

Renal Correction of Alkalosis—Decreased Tubular Secretion of Hydrogen Ions and Increased Excretion of Bicarbonate Ions 359

Alkalosis Increases the Ratio of HCO_3^-/H^+ in Renal Tubular Fluid 359

Clinical Causes of Acid-Base Disorders 359

Respiratory Acidosis Is Caused by Decreased Ventilation and Increased Pco₂ 359

Respiratory Alkalosis Results from Increased Ventilation and Decreased Pco₂ 359

Metabolic Acidosis Results from Decreased Extracellular Fluid Bicarbonate Concentration 360

Metabolic Alkalosis Is Caused by Increased Extracellular Fluid Bicarbonate Concentration 360

Treatment of Acidosis or Alkalosis 360

Clinical Measurements and Analysis of Acid-Base Disorders 361

Complex Acid-Base Disorders and the Use of the Acid-Base Nomogram for Diagnosis 361

Use of Anion Gap to Diagnose Acid-Base Disorders 362

CHAPTER 31

Micturition, Diuretics, and Kidney Diseases 364

Micturition 364

Physiologic Anatomy and Nervous Connections of the Bladder 364

Innervation of the Bladder 364

Transport of Urine from the Kidney Through the Ureters and Into the Bladder 364

Filling of the Bladder and Bladder Wall Tone; The Cystometrogram 365

Micturition Reflex 366

Facilitation or Inhibition of Micturition by the Brain 366 Abnormalities of Micturition 366

Diuretics and Their Mechanisms of Action 367

Osmotic Diuretics Decrease Water Reabsorption by Increasing Osmotic Pressure of Tubular Fluid 367

"Loop" Diuretics Decrease Active Sodium-Chloride-Potassium Reabsorption in the Thick Ascending Loop of Henle 368

Thiazide Diuretics Inhibit Sodium-Chloride Reabsorption in the Early Distal Tubule 368

Carbonic Anhydrase Inhibitors Block Sodium-Bicarbonate Reabsorption in the Proximal Tubules 368

Competitive Inhibitors of Aldosterone Decrease Sodium Reabsorption from and Potassium Secretion into the Cortical Collecting Tubule 368

Diuretics That Block Sodium Channels in the Collecting Tubules Decrease Sodium Reabsorption 368

Kidney Diseases 369

Acute Renal Failure 369

Prerenal Acute Renal Failure Caused by Decreased Blood Flow to the Kidney 369

Intrarenal Acute Renal Failure Caused by Abnormalities Within the Kidney 369

Postrenal Acute Renal Failure Caused by Abnormalities of the Lower Urinary Tract 370

Physiologic Effects of Acute Renal Failure 370

Chronic Renal Failure: An Irreversible Decrease in the Number of Functional Nephrons 371

Vicious Circle of Chronic Renal Failure Leading to End-Stage Renal Disease 371

Injury to the Renal Vasculature as a Cause of Chronic Renal Failure 371

Injury to the Glomeruli as a Cause of Chronic Renal Failure—Glomerulonephritis 372

Injury to the Renal Interstitium as a Cause of Chronic Renal Failure—Pyelonephritis 373

Nephrotic Syndrome—Excretion of Protein in the Urine Because of Increased Glomerular Permeability 373 Abnormal Nephron Function in Chronic Renal Failure 373 Effects of Renal Failure on the Body Fluids—Uremia 375 Hypertension and Kidney Disease 376

Specific Tubular Disorders 377

Treatment of Renal Failure by Dialysis With an Artificial Kidney 377

UNIT V

Blood Cells, Immunity, and Blood Clotting

CHAPTER 32

Red Blood Cells, Anemia, and Polycythemia

Red Blood Cells (Erythrocytes) 382

Production of Red Blood Cells 382

Formation of Hemoglobin 386

Iron Metabolism 387

Destruction of Red Blood Cells 389

The Anemias 389

Effects of Anemia on the Circulatory System 390

Polycythemia 390 Effect of Polycythemia on the Circulatory System 390
CHAPTER 33 Resistance of the Body to Infection: I. Leukocytes, Granulocytes, the Monocyte- Macrophage System, and Inflammation 392
Leukocytes (White Blood Cells) 392 General Characteristics of Leukocytes 392 Genesis of the White Blood Cells 392 Life Span of the White Blood Cells 393 Defense Properties of Neutrophils and Macrophages 393
Phagocytosis 394 Monocyte-Macrophage System (Reticuloendothelial System) 395
Inflammation and Role of Neutrophils and Macrophages 397 Inflammation 397 Macrophage and Neutrophil Responses During
Inflammation 397 Eosinophils 399 Basophils 399
Leukopenia 399 The Leukemias 400 Effects of Leukemia on the Body 400
CHAPTER 34 Resistance of the Body to Infection: II. Immunity and Allergy 402
Innate Immunity 402 Acquired Immunity 402 Basic Types of Acquired Immunity 402 Both Types of Acquired Immunity Are Initiated by
Antigens 402 Lymphocytes Are the Basis of Acquired Immunity 403 Preprocessing of the T and B Lymphocytes 403 T Lymphocytes and B-Lymphocyte Antibodies React Highly
Specifically Against Specific Antigens—Role of Lymphocyte Clones 404
Origin of the Many Clones of Lymphocytes 405 Specific Attributes of the B-Lymphocyte System—Humoral Immunity and the Antibodies 405
Special Attributes of the T-Lymphocyte System—Activated T Cells and Cell-Mediated Immunity 408 Several Types of T Cells and Their Different
Functions 409 Tolerance of the Acquired Immunity System to One's Own Tissues—Role of Preprocessing in the Thymus and Bone Marrow 410
Immunization 411 Passive Immunity 411
Allergy and Hypersensitivity 411 Allergy Caused by Activated T Cells: Delayed-Reaction Allergy 411
Allergies in the So-Called Allergic Person, Who Has Excess IgE Antibodies 411
CHAPTER 35 Blood Groups; Transfusion; Tissue and Organ

Transplantation 413 Antigenicity Causes Immune Reactions of Blood 413

O-A-B Blood Groups 413 A and B Antigens—Agglutinogens 413

Agglutinins 413

Contents Agglutination Process in Transfusion Reactions 414 Blood Typing 414 Rh Blood Types 415 Rh Immune Response 415 Transfusion Reactions Resulting from Mismatched Blood Types 416 Transplantation of Tissues and Organs 416 Attempts to Overcome the Immune Reaction to Transplanted Tissue 417 CHAPTER 36 Hemostasis and Blood Coagulation Events in Hemostasis 419 Vascular Constriction 419 Formation of the Platelet Plug 419 Blood Coagulation in the Ruptured Vessel 420 Fibrous Organization or Dissolution of the Blood Clot 421 Mechanism of Blood Coagulation 421 Conversion of Prothrombin to Thrombin 421 Conversion of Fibrinogen to Fibrin—Formation of the Clot 421 Vicious Circle of Clot Formation 422 Initiation of Coagulation: Formation of Prothrombin Activator 422 Prevention of Blood Clotting in the Normal Vascular System—The Intravascular Anticoagulants 425 Lysis of Blood Clots—Plasmin 425 Conditions That Cause Excessive Bleeding in Human

Beings 426

Decreased Prothrombin, Factor VII, Factor IX, and Factor X Caused by Vitamin K Deficiency 426 Hemophilia 426

Thrombocytopenia 426

Thromboembolic Conditions in the Human Being 427 Femoral Venous Thrombosis and Massive Pulmonary Embolism 427

Disseminated Intravascular Coagulation 427

Anticoagulants for Clinical Use 428 Heparin as an Intravenous Anticoagulant 428 Coumarins as Anticoagulants 428

Prevention of Blood Coagulation Outside the Body 428

Blood Coagulation Tests 428 Bleeding Time 428 Clotting Time 428 Prothrombin Time 429

UNIT VII Respiration

CHAPTER 37 Pulmonary Ventilation 432

Mechanics of Pulmonary Ventilation 432 Muscles That Cause Lung Expansion and Contraction 432 Movement of Air In and Out of the Lungs—and the Pressures That Cause the Movement 432 Effect of the Thoracic Cage on Lung Expansibility 435 "Work" of Breathing 435

Pulmonary Volumes and Capacities 436 Recording Changes in Pulmonary Volume— Spirometry 436 Abbreviations and Symbols Used in Pulmonary Function Studies 437

Determination of Functional Residual Capacity, Residual Volume, and Total Lung Capacity—Helium Dilution Method 437

Minute Respiratory Volume Equals Respiratory Rate Times Tidal Volume 438

Alveolar Ventilation 438

Dead Space and Its Effect on Alveolar Ventilation 439 Rate of Alveolar Ventilation 439

Functions of the Respiratory Passageways 440

Trachea, Bronchi, and Bronchioles 440

Normal Respiratory Functions of the Nose 441

Vocalization 442

CHAPTER 38

Pulmonary Circulation; Pulmonary Edema; Pleural Fluid 444

Physiologic Anatomy of the Pulmonary Circulatory System 444

Pressures in the Pulmonary System 444

Blood Volume of the Lungs 445

Blood Flow Through the Lungs and Its Distribution 445

Effect of Hydrostatic Pressure Gradients in the Lungs on Regional Pulmonary Blood Flow 446

Zones 1, 2, and 3 of Pulmonary Blood Flow 446

Effect of Increased Cardiac Output on the Pulmonary Circulation During Heavy Exercise 447

Function of the Pulmonary Circulation When the Left Atrial Pressure Rises as a Result of Left-Sided Heart Failure 447

Pulmonary Capillary Dynamics 448

Capillary Exchange of Fluid in the Lungs, and Pulmonary Interstitial Fluid Dynamics 448

Pulmonary Edema 449

Fluids in the Pleural Cavity 450

CHAPTER 39

Physical Principles of Gas Exchange; Diffusion of Oxygen and Carbon Dioxide Through the Respiratory Membrane 452

Physics of Gas Diffusion and Gas Partial Pressures 452

Molecular Basis of Gas Diffusion 452

Gas Pressures in a Mixture of Gases—"Partial Pressures" of Individual Gases 452

Pressures of Gases Dissolved in Water and Tissues 452 Vapor Pressure of Water 453

Diffusion of Gases Through Fluids—Pressure Difference Causes Net Diffusion 453

Diffusion of Gases Through Tissues 454

Composition of Alveolar Air—Its Relation to Atmospheric Air 454

Rate at Which Alveolar Air Is Renewed by Atmospheric Air 454

Oxygen Concentration and Partial Pressure in the Alveoli 455

CO₂ Concentration and Partial Pressure in the Alveoli 455 Expired Air 456

Diffusion of Gases Through the Respiratory Membrane 456

Factors That Affect the Rate of Gas Diffusion Through the
Respiratory Membrane 457

Diffusing Capacity of the Respiratory Membrane 458
Effect of the Ventilation-Perfusion Ratio on Alveolar Gas
Concentration 460

 PO_2 - PCO_2 , $\dot{V}A/\dot{Q}$ Diagram 460

Concept of "Physiologic Shunt" (When VA/Q Is Below Normal) 461

Concept of "Physiologic Dead Space" (When VA/Q Is Greater Than Normal) 461

Abnormalities of Ventilation-Perfusion Ratio 461

CHAPTER 40

Transport of Oxygen and Carbon Dioxide in the Blood and Body Fluids 463

Pressures of Oxygen and Carbon Dioxide in the Lungs, Blood, and Tissues 463

Uptake of Oxygen by the Pulmonary Blood 463

Transport of Oxygen in the Arterial Blood 464

Diffusion of Oxygen from the Peripheral Capillaries into the Tissue Fluid 464

Diffusion of Oxygen from the Peripheral Tissue Capillaries to the Tissue Cells 465

Diffusion of Carbon Dioxide from the Peripheral Tissue Cells into the Tissue Capillaries and from the Pulmonary Capillaries into the Alveoli 465

Transport of Oxygen in the Blood 466

Reversible Combination of Oxygen with Hemoglobin 466

Effect of Hemoglobin to "Buffer" the Tissue PO₂ 467 Factors That Shift the Oxygen-Hemoglobin Dissociation

Curve—Their Importance for Oxygen Transport 468

Metabolic Use of Oxygen by the Cells 469

Transport of Oxygen in the Dissolved State 469

Combination of Hemoglobin with Carbon Monoxide— Displacement of Oxygen 469

Transport of Carbon Dioxide in the Blood 470

Chemical Forms in Which Carbon Dioxide Is Transported 470

Transport of Carbon Dioxide in the Form of Bicarbonate Ion 470

Carbon Dioxide Dissociation Curve 471

When Oxygen Binds with Hemoglobin, Carbon Dioxide Is Released—The Haldane Effect—to Increase CO₂
Transport 471

Change in Blood Acidity During Carbon Dioxide Transport 472

Respiratory Exchange Ratio 472

CHAPTER 41

Regulation of Respiration 474

Respiratory Center 474

Dorsal Respiratory Group of Neurons—Its Control of Inspiration and of Respiratory Rhythm 474

The Pneumotaxic Center Limits the Duration of Inspiration and Increases the Respiratory Rate 475

Ventral Respiratory Group of Neurons Functions in Both Inspiration and Expiration 475

Possibility of an "Apneustic Center" in the Lower Pons 475

Lung Inflation Signals Limit Inspiration—The Hering-Breuer Inflation Reflex 475

Control of Overall Respiratory Center Activity 476

Chemical Control of Respiration 476

Direct Chemical Control of Respiratory Center Activity by Carbon Dioxide and Hydrogen Ions 476

Peripheral Chemoreceptor System for Control of Respiratory Activity—Role of Oxygen in Respiratory Control 477 Composite Effects of PCO₂, pH, and PO₂ on Alveolar Ventilation 479 Regulation of Respiration During Exercise 479

Other Factors That Affect Respiration 481

Periodic Breathing 482

CHAPTER 42

Respiratory Insufficiency—Pathophysiology, Diagnosis, Oxygen Therapy 484

Useful Methods for Studying Respiratory Abnormalities 484

Study of Blood Gases and Blood pH 484

Measurement of Maximum Expiratory Flow 485

Forced Expiratory Vital Capacity and Forced Expiratory Volume 486

Physiologic Peculiarities of Specific Pulmonary

Abnormalities 486

Chronic Pulmonary Emphysema 486

Pneumonia 488

Atelectasis 488

Asthma 489

Tuberculosis 489

Hypoxia and Oxygen Therapy 490

Oxygen Therapy in Different Types of Hypoxia 490

Hypercapnia 491

Cyanosis 491

Dyspnea 491

Artificial Respiration 492

UNIT VIII

Aviation, Space, and Deep-Sea Diving Physiology

CHAPTER 43

Aviation, High-Altitude, and Space Physiology 496

Effects of Low Oxygen Pressure on the Body 496

Alveolar Po₂ at Different Elevations 496

Effect of Breathing Pure Oxygen on Alveolar Po₂ at Different Altitudes 496

Acute Effects of Hypoxia 497

Acclimatization to Low Po₂ 497

Natural Acclimatization of Native Human Beings Living at High Altitudes 498

Work Capacity at High Altitudes—The Effect of Acclimatization 499

Chronic Mountain Sickness 499

Acute Mountain Sickness and High-Altitude Pulmonary Edema 499

Effects of Acceleratory Forces on the Body in Aviation and Space Physiology 500

Centrifugal Acceleratory Forces 500

Effects of Linear Acceleratory Forces on the Body 501 "Artificial Climate" in the Sealed Spacecraft 502

Weightlessness in Space 502

CHAPTER 44

Physiology of Deep-Sea Diving and Other Hyperbaric Conditions 504

Effect of High Partial Pressures of Gases on the Body 504

Oxygen Toxicity at High Pressures 504

Decompression of the Diver After Exposure to High Pressures 506

Scuba (Self-Contained Underwater Breathing Apparatus)
Diving 508

Special Physiologic Problems in Submarines 508 Hyperbaric Oxygen Therapy 509

UNIT IX

The Nervous System: A. General Principles and Sensory Physiology

CHAPTER 45

Organization of the Nervous System; Basic Functions of Synapses and Transmitter Substances 512

General Design of the Nervous System 512

The Central Nervous System Neuron—The Basic Functional Unit 512

Sensory Division of the Nervous System—Sensory Receptors 512

Motor Division—The Effectors 512

Processing of Information—"Integrative" Function of the Nervous System 513

Storage of Information—Memory 514

Major Levels of Central Nervous System Function 514

Spinal Cord Level 514

Lower Brain or Subcortical Level 514

Higher Brain or Cortical Level 515

Comparison of the Nervous System With an Electronic Computer 515

Central Nervous System Synapses 515

Types of Synapses—Chemical and Electrical 515

Physiologic Anatomy of the Synapse 516

Chemical Substances That Function as Synaptic Transmitters 519

Electrical Events During Neuronal Excitation 521

Electrical Events in Neuronal Inhibition 522 Special Functions of Dendrites in Exciting Neurons 524

Relation of State of Excitation of the Neuron to Rate of Firing 525

Some Special Characteristics of Synaptic Transmission 525

CHAPTER 46

Sensory Receptors; Neuronal Circuits for Processing Information 528

Types of Sensory Receptors and the Sensory Stimuli They
Detect 528

Differential Sensitivity of Receptors 528

Transduction of Sensory Stimuli Into Nerve Impulses 529

Local Electrical Currents at Nerve Endings—Receptor

Potentials 529

Adaptation of Receptors 531

Nerve Fibers That Transmit Different Types of Signals and Their Physiologic Classification 532

Transmission of Signals of Different Intensity in Nerve Tracts—Spatial and Temporal Summation 533

Transmission and Processing of Signals in Neuronal Pools 533

Relaying of Signals Through Neuronal Pools 534 Prolongation of a Signal by a Neuronal Pool— "Afterdischarge" 536

Instability and Stability of Neuronal Circuits 538

xxiv Contents Inhibitory Circuits as a Mechanism for Stabilizing Nervous System Function 538 Synaptic Fatigue as a Means of Stabilizing the Nervous System 538 CHAPTER 47 Somatic Sensations: I. General Organization; the Tactile and Position Senses 540 Classification of Somatic Senses 540 Detection and Transmission of Tactile Sensations 540 Detection of Vibration 541 Tickling and Itch 542 Sensory Pathways for Transmitting Somatic Signals into the Central Nervous System 542 Dorsal Column-Medial Lemniscal System 542 Anterolateral System 542 Transmission in the Dorsal Column–Medial Lemniscal System 542 Anatomy of the Dorsal Column-Medial Lemniscal System 542 Somatosensory Cortex 544 Somatosensory Association Areas 546 Overall Characteristics of Signal Transmission and Analysis in the Dorsal Column–Medial Lemniscal System 546 Interpretation of Sensory Stimulus Intensity 548 Judgment of Stimulus Intensity 548 Position Senses 548 Transmission of Less Critical Sensory Signals in the Anterolateral Pathway 549 Anatomy of the Anterolateral Pathway 549 Some Special Aspects of Somatosensory Function 550 Function of the Thalamus in Somatic Sensation 550 Cortical Control of Sensory Sensitivity—"Corticofugal" Signals 550 Segmental Fields of Sensation—The Dermatomes 551 CHAPTER 48 Somatic Sensations: II. Pain, Headache, and Thermal Sensations 552 Types of Pain and Their Qualities—Fast Pain and Slow Pain 552 Pain Receptors and Their Stimulation 552 Rate of Tissue Damage as a Stimulus for Pain 553 Dual Transmission of Pain Signals into the Central Nervous System 553 Dual Pain Pathways in the Cord and Brain Stem—The Neospinothalamic Tract and the Paleospinothalamic Tract 554 Pain Suppression ("Analgesia") System in the Brain and Spinal Cord 555 The Brain's Opiate System—The Endorphins and Enkephalins 556 Inhibition of Pain Transmission by Tactile Sensory

Signals 557

Referred Pain 557

Visceral Pain 557

Treatment of Pain by Electrical Stimulation 557

Parietal Pain Caused by Visceral Damage 558

Causes of True Visceral Pain 557

Localization of Visceral Pain—The "Visceral" and the "Parietal" Pain Transmission Pathways 558 Some Clinical Abnormalities of Pain and Other Somatic Sensations 559 Hyperalgesia 559 Thalamic Syndrome 559 Herpes Zoster (Shingles) 559 Tic Douloureux 559 Brown-Séquard Syndrome 560 Headache 560 Headache of Intracranial Origin 560 Extracranial Types of Headache 561 Thermal Sensations 561 Thermal Receptors and Their Excitation 561 Transmission of Thermal Signals in the Nervous System 562 UNIT X The Nervous System: B. The Special Senses CHAPTER 49 The Eye: I. Optics of Vision 566 Physical Principles of Optics 566 Refraction of Light 566 Application of Refractive Principles to Lenses 566 Focal Length of a Lens 567 Formation of an Image by a Convex Lens 568 Measurement of the Refractive Power of a Lens—The Diopter 569 Optics of the Eye 569 The Eye as a Camera 569 Mechanism of Accommodation 570 Pupillary Diameter 571 Errors of Refraction 571 Visual Acuity 573 Determination of Distance of an Object from the Eye-Depth Perception 574 Ophthalmoscope 574 Fluid System of the Eye—Intraocular Fluid 575 Formation of Aqueous Humor by the Ciliary Body 575 Outflow of Aqueous Humor from the Eye 576 Intraocular Pressure 576 CHAPTER 50 The Eye: II. Receptor and Neural Function of the Retina 578 Anatomy and Function of the Structural Elements of the Retina 578 Photochemistry of Vision 579 Rhodopsin-Retinal Visual Cycle, and Excitation of the Rods 580 Automatic Regulation of Retinal Sensitivity—Light and Dark Adaptation 582 Color Vision 584 Tricolor Mechanism of Color Detection 584 Color Blindness 584 Neural Function of the Retina 586 Neural Circuitry of the Retina 586 Ganglion Cells 588 Excitation of the Ganglion Cells 588

200	2001	80.82E.01	200757500	2000 PM	
\sim	ш	Λ	РΤ	EB	
	П	M	Г 1	LI	51

The Eye: III. Central Neurophysiology of Vision 591

Visual Pathways 591

Function of the Dorsal Lateral Geniculate Nucleus 591

Organization and Function of the Visual Cortex 592

Layered Structure of the Primary Visual Cortex 593

Two Major Pathways for Analysis of Visual Information—

(1) The Fast "Position" and "Motion" Pathway; (2) The Accurate Color Pathway 594

Neuronal Patterns of Stimulation During Analysis of the

Visual Image 594

Detection of Color 595

Effect of Removing the Primary Visual Cortex 595

Fields of Vision; Perimetry 595

Eye Movements and Their Control 596

Fixation Movements of the Eyes 596

Fusion of the Visual Images from the Two Eyes 598

Autonomic Control of Accommodation and Pupillary

Aperture 599

Control of Accommodation (Focusing the Eyes) 599 Control of Pupillary Diameter 600

CHAPTER 52

The Sense of Hearing 602

Tympanic Membrane and the Ossicular System 602 Conduction of Sound from the Tympanic Membrane to the

Cochlea 602

Transmission of Sound Through Bone 603

The Cochlea 603

Functional Anatomy of the Cochlea 603

Transmission of Sound Waves in the Cochlea—The

"Traveling Wave" 604

Function of the Organ of Corti 605

Determination of Sound Frequency—The "Place"

Principle 607

Determination of Loudness 607

Central Auditory Mechanisms 608

Auditory Pathways 608

Function of the Cerebral Cortex in Hearing 609

Determination of the Direction from Which Sound

Comes 610

Centrifugal Signals from the Central Nervous System to

Lower Auditory Centers 611

Hearing Abnormalities 611

Types of Deafness 611

CHAPTER 53

The Chemical Senses—Taste and Smell 613

Sense of Taste 613

Primary Sensations of Taste 613

Taste Bud and Its Function 614

Transmission of Taste Signals into the Central Nervous

System 615

Taste Preference and Control of the Diet 616

Sense of Smell 616

Olfactory Membrane 616

Stimulation of the Olfactory Cells 617

Transmission of Smell Signals into the Central Nervous System 618

UNIT XI

The Nervous System: C. Motor and Integrative Neurophysiology

CHAPTER 54

Motor Functions of the Spinal Cord; The Cord Reflexes 622

Organization of the Spinal Cord for Motor Functions 622

Muscle Sensory Receptors—Muscle Spindles and Golgi

Tendon Organs—and Their Roles in Muscle Control 624

Receptor Function of the Muscle Spindle 624

Muscle Stretch Reflex 625

Role of the Muscle Spindle in Voluntary Motor

Activity 626

Clinical Applications of the Stretch Reflex 627

Golgi Tendon Reflex 628

Function of the Muscle Spindles and Golgi Tendon Organs in Conjunction with Motor Control from Higher Levels of

the Brain 628

Flexor Reflex and the Withdrawal Reflexes 629

Crossed Extensor Reflex 630

Reciprocal Inhibition and Reciprocal Innervation 630

Reflexes of Posture and Locomotion 630

Postural and Locomotive Reflexes of the Cord 630

Scratch Reflex 631

Spinal Cord Reflexes That Cause Muscle Spasm 632

Autonomic Reflexes in the Spinal Cord 632

Spinal Cord Transection and Spinal Shock 632

CHAPTER 55

Cortical and Brain Stem Control of Motor Function 634

The Motor Cortex and Corticospinal Tract 634

Primary Motor Cortex 634

Premotor Area 634

Supplementary Motor Area 635

Some Specialized Areas of Motor Control Found in the

Human Motor Cortex 635

Transmission of Signals from the Motor Cortex to the Muscles 636

Incoming Fiber Pathways to the Motor Cortex 637

The Red Nucleus Serves as an Alternative Pathway for Transmitting Cortical Signals to the Spinal Cord 637

"Extrapyramidal" System 638

Excitation of the Spinal Cord Motor Control Areas by the Primary Motor Cortex and the Red Nucleus 638

Role of the Brain Stem in Controlling Motor Function 640 Support of the Body Against Gravity-Roles of the Reticular

and Vestibular Nuclei 640

Vestibular Sensations and the Maintenance of Equilibrium 641

Vestibular Apparatus 641

Function of the Utricle and Saccule in the Maintenance of

Static Equilibrium 643

Detection of Head Rotation by the Semicircular Ducts 644 Vestibular Mechanisms for Stabilizing the Eyes 645

Other Factors Concerned with Equilibrium 645

Functions of Brain Stem Nuclei in Controlling Subconscious,

Stereotyped Movements 646

CHAPTER 56

The Cerebellum, the Basal Ganglia, and Overall Motor Control 647

The Cerebellum and Its Motor Functions 647

Anatomical Functional Areas of the Cerebellum 647

Neuronal Circuit of the Cerebellum 648

Function of the Cerebellum in Overall Motor Control 652

Clinical Abnormalities of the Cerebellum 655

The Basal Ganglia—Their Motor Functions 656

Function of the Basal Ganglia in Executing Patterns of

Motor Activity—The Putamen Circuit 657

Role of the Basal Ganglia for Cognitive Control of Sequences of Motor Patterns—The Caudate Circuit 657 Function of the Basal Ganglia to Change the Timing and to

Scale the Intensity of Movements 658

Functions of Specific Neurotransmitter Substances in the Basal Ganglial System 659

Clinical Syndromes Resulting from Damage to the Basal Ganglia 659

Integration of the Many Parts of the Total Motor Control System 660

Spinal Level 660
Hindbrain Level 660
Motor Cortex Level 660
What Drives Us to Action? 661

CHAPTER 57

The Cerebral Cortex; Intellectual Functions of the Brain; and Learning and Memory 663

Physiologic Anatomy of the Cerebral Cortex 663 Functions of Specific Cortical Areas 663

Association Areas 665

Comprehensive Interpretative Function of the Posterior Superior Temporal Lobe—"Wernicke's Area" (a General Interpretative Area) 666

Functions of the Parieto-occipitotemporal Cortex in the Nondominant Hemisphere 668

Higher Intellectual Functions of the Prefrontal Association Area 668

Function of the Brain in Communication—Language Input and Language Output 669

Function of the Corpus Callosum and Anterior Commissure to Transfer Thoughts, Memories, Training, and Other Information Between the Two Cerebral Hemispheres 671

Thoughts, Consciousness, and Memory 671

Memory—Roles of Synaptic Facilitation and Synaptic

Inhibition—672

Short-Term Memory 673

Intermediate Long-Term Memory 673 Long-Term Memory 674 Consolidation of Memory 675

CHAPTER 58

Behavioral and Motivational Mechanisms of the Brain—The Limbic System and the Hypothalamus 678

Activating-Driving Systems of the Brain 678

Control of Cerebral Activity by Continuous Excitatory

Signals from the Brain Stem 678

Neurohormonal Control of Brain Activity 679

The Limbic System 681

Functional Anatomy of the Limbic System; the Key Position of the Hypothalamus 681

The Hypothalamus, a Major Control Headquarters for the Limbic System 682

Vegetative and Endocrine Control Functions of the Hypothalamus 682

Behavioral Functions of the Hypothalamus and Associated Limbic Structures 684

"Reward" and "Punishment" Function of the Limbic System 684

Importance of Reward and Punishment in Behavior 685
Specific Functions of Other Parts of the Limbic System 686
Functions of the Hippocampus 686
Functions of the Amygdala 686
Function of the Limbic Cortex 687

CHAPTER 59

States of Brain Activity—Sleep; Brain Waves; Epilepsy; Psychoses 689

Sleep 689

Slow-Wave Sleep 689

REM Sleep (Paradoxical Sleep, Desynchronized Sleep) 689 Basic Theories of Sleep 690

Physiologic Effects of Sleep 691

Brain Waves 691

Origin in the Brain of the Brain Waves 692

Effect of Varying Degrees of Cerebral Activity on the Basic Frequency of the EEG 692

Changes in the EEG at Different Stages of Wakefulness and Sleep 693

Epilepsy 693

Grand Mal Epilepsy 693

Petit Mal Epilepsy 694

Focal Epilepsy 694

Psychotic Behavior and Dementia—Roles of Specific Neurotransmitter Systems 694

Depression and Manic-Depressive Psychoses—Decreased Activity of the Norepinephrine and Serotonin Neurotransmitter Systems 695

Schizophrenia—Possible Exaggerated Function of Part of the Dopamine System 695

Alzheimer's Disease—Amyloid Plaques and Depressed Memory 695

CHAPTER 60

The Autonomic Nervous System; and the Adrenal Medulla 697

General Organization of the Autonomic Nervous System 697

Physiologic Anatomy of the Sympathetic Nervous

System 697

Physiologic Anatomy of the Parasympathetic Nervous System 698

Basic Characteristics of Sympathetic and Parasympathetic Function 699

Cholinergic and Adrenergic Fibers—Secretion of Acetylcholine or Norepinephrine 699

Receptors on the Effector Organs 700

Excitatory and Inhibitory Actions of Sympathetic and Parasympathetic Stimulation 701

Effects of Sympathetic and Parasympathetic Stimulation on Specific Organs 701

Function of the Adrenal Medullae 703	Gastrointestinal Blood Flow—The "Splanchnic
Relation of Stimulus Rate to Degree of Sympathetic and	Circulation" 724
Parasympathetic Effect 704	Anatomy of the Gastrointestinal Blood Supply 724
Sympathetic and Parasympathetic "Tone" 704	Effect of Gut Activity and Metabolic Factors on
Denervation Supersensitivity of Sympathetic and	Gastrointestinal Blood Flow 724
Parasympathetic Organs After Denervation 705	Nervous Control of Gastrointestinal Blood Flow 726
Autonomic Reflexes 705	CHAPTER 63
Stimulation of Discrete Organs in Some Instances and Mass	Propulsion and Mixing of Food in the Alimentary
Stimulation in Other Instances by the Sympathetic and Parasympathetic Systems 705	Tract 728
"Alarm" or "Stress" Response of the Sympathetic Nervous	Ingestion of Food 728
System 706	Mastication (Chewing) 728
Medullary, Pontine, and Mesencephalic Control of the	Swallowing (Deglutition) 728
Autonomic Nervous System 706	Motor Functions of the Stomach 730
Pharmacology of the Autonomic Nervous System 707	Storage Function of the Stomach 731
Drugs That Act on Adrenergic Effector Organs—The Sympathomimetic Drugs 707	Mixing and Propulsion of Food in the Stomach—The Basic Electrical Rhythm of the Stomach 731
Drugs That Act on Cholinergic Effector Organs 707	Emptying of the Stomach 731
Drugs That Stimulate or Block Sympathetic and	Regulation of Stomach Emptying 732
Parasympathetic Postganglionic Neurons 708	Movements of the Small Intestine 733
	Mixing Contractions (Segmentation Contractions) 733
CHAPTER 61	Propulsive Movements 734
Cerebral Blood Flow; the Cerebrospinal Fluid;	Function of the Ileocecal Valve 734
and Brain Metabolism 709	Movements of the Colon 735
Cerebral Blood Flow 709	Defecation 736 Other Autonomic Reflexes That Affect Bowel Activity 737
Normal Rate of Cerebral Blood Flow 709	Other Autonomic Renexes That Affect Bower Activity 131
Regulation of Cerebral Blood Flow 709	CHAPTER 64
Cerebral Microcirculation 710	Secretory Functions of the Alimentary Tract 738
A Cerebral "Stroke" Occurs When Cerebral Blood Vessels	AND
Are Blocked 711	General Principles of Alimentary Tract Secretion 738 Anatomical Types of Glands 738
Cerebrospinal Fluid System 711	Basic Mechanisms of Stimulation of the Alimentary Tract
Cushioning Function of the Cerebrospinal Fluid 711 Formation, Flow, and Absorption of Cerebrospinal	Glands 738
Fluid 711	Basic Mechanism of Secretion by Glandular Cells 739
Cerebrospinal Fluid Pressure 713	Lubricating and Protective Properties of Mucus, and
Obstruction to the Flow of Cerebrospinal Fluid Can Cause	Importance of Mucus in the Gastrointestinal Tract 740
Hydrocephalus 713	Secretion of Saliva 740
Blood-Cerebrospinal Fluid and Blood-Brain Barriers 714	Esophageal Secretion 742
Brain Edema 714	Gastric Secretion 742
Brain Metabolism 714	Characteristics of the Gastric Secretions 742
	Regulation of Gastric Secretion by Nervous and Hormonal Mechanisms 744
UNIT XII	Stimulation of Gastric Acid Secretion 744
Gastrointestinal Physiology	Regulation of Pepsinogen Secretion 744
	Phases of Gastric Secretion 745
CHAPTER 62	Inhibition of Gastric Secretion by Post-Stomach Intestinal
General Principles of Gastrointestinal Function—	Factors 745
Motility, Nervous Control, and Blood	Chemical Composition of Gastrin and Other
Circulation 718	Gastrointestinal Hormones 746
General Principles of Gastrointestinal Motility 718	Pancreatic Secretion 746
Characteristics of the Gastrointestinal Wall 718	The Pancreatic Digestive Enzymes 746
Neural Control of Gastrointestinal Function—The Enteric	Secretion of Bicarbonate Ions 747
Nervous System 720	Regulation of Pancreatic Secretion 747
Differences Between the Myenteric and Submucosal Plexuses 720	Secretion of Bile by the Liver; Functions of the Biliary Tree 749
Types of Neurotransmitters Secreted by the Enteric	Physiologic Anatomy of Biliary Secretion 749
Neurons 721 Hormonal Control of Castrointestinal Metility 722	Function of Bile Salts in Fat Digestion and Absorption 750
Hormonal Control of Gastrointestinal Motility 722 Functional Types of Movements in the Gastrointestinal	Liver Secretion of Cholesterol; and Gallstone
Tract 723	Formation 751 Secretions of the Small Intestine 752
Propulsive Movements—Peristalsis 723	Secretions of the Small Intestine 752 Secretion of Mucus by Brunner's Glands in the
Mixing Movements 723	Duodenum 752

Secretion of the Intestinal Digestive Juices by the Crypts of Lieberkühn 752	Formation of Large Quantities of ATP by Oxidation of Hydrogen (the Process of Oxidative		
Regulation of Small Intestinal Secretion 752 Secretions of the Large Intestine 753	Phosphorylation) 777 Summary of ATP Formation During the Breakdown of		
recipitions of the Burge mitestine	Glucose 778		
THAPTER 65 Digestion and Absorption in the Gastrointestinal Tract 754	Control of Energy Release from Stored Glycogen When the Body Needs Additional Energy: Effect of ATP and ADP Concentrations in the Cell to Control the Rate of		
Digestion of the Various Foods 754	Glycolysis 778		
Digestion of Carbohydrates 754	Anaerobic Release of Energy—"Anaerobic		
Digestion of Proteins 755	Glycolysis" 778		
Digestion of Fats 756	Release of Energy from Glucose by the Pentose Phosphate		
Basic Principles of Gastrointestinal Absorption 758	Pathway 779		
Anatomical Basis of Absorption 758 Basic Mechanisms of Absorption 759	Glucose Conversion to Glycogen or Fat 780 Formation of Carbohydrates from Proteins and Fats—		
Absorption in the Small Intestine 759	"Gluconeogenesis" 780		
Absorption of Water 759	Blood Glucose 780		
Absorption of Ions 759	Diood Glacosc 700		
Absorption of Nutrients 761	CHAPTER 68		
Absorption in the Large Intestine: Formation of Feces 762	Lipid Metabolism 781		
	Transport of Lipids in the Body Fluids 781		
Physiology of Gastrointestinal Disorders 764	Transport of Triglycerides and Other Lipids from the Gastrointestinal Tract by Lymph—The		
Disorders of Swallowing and of the Esophagus 764	Chylomicrons 781		
Disorders of the Stomach 764	Transport of Fatty Acids in the Blood in Combination with		
Peptic Ulcer 765	Albumin—"Free Fatty Acid" 782		
Disorders of the Small Intestine 766	Lipoproteins—Their Special Function in Transporting		
Abnormal Digestion of Food in the Small Intestine—	Cholesterol and Phospholipids 782		
Pancreatic Failure 766 Malabsorption by the Small Intestinal Mucosa—Sprue 766	Fat Deposits 782		
Disorders of the Large Intestine 767	Adipose Tissue 782 Liver Lipids 783		
Constipation 767	Use of Triglycerides for Energy: Formation of Adenosine		
Diarrhea 767	Triphosphate 783		
Paralysis of Defecation in Spinal Cord Injuries 767	Formation of Acetoacetic Acid in the Liver and Its		
General Disorders of the Gastrointestinal Tract 768	Transport in the Blood 784		
Vomiting 768	Synthesis of Triglycerides from Carbohydrates 785		
Nausea 769	Synthesis of Triglycerides from Proteins 786		
Gastrointestinal Obstruction 769	Regulation of Energy Release from Triglycerides 786		
Gases in the Gastrointestinal Tract; "Flatus" 769	Obesity 787		
	Phospholipids and Cholesterol 787		
UNIT XIII	Phospholipids 787		
Metabolism and Temperature Regulation	Cholesterol 788		
CHAPTER 67	Cellular Structural Functions of Phospholipids and		
Metabolism of Carbohydrates, and Formation of	Cholesterol—Especially for Membranes 788		
Adenosine Triphosphate 772	Atherosclerosis 789		
	Basic Causes of Atherosclerosis—The Roles of Cholestero and Lipoproteins 789		
Release of Energy from Foods, and the Concept of "Free Energy" 772	Other Factors That Lead to Atherosclerosis 789		
Role of Adenosine Triphosphate in Metabolism 772	Prevention of Atherosclerosis 789		
Central Role of Glucose in Carbohydrate Metabolism 772	Trovention of Timeroscierosis 100		
Transport of Glucose Through the Cell Membrane 773	CHAPTER 69		
Effect of Insulin to Increase Facilitated Diffusion of	Protein Metabolism 791		
Glucose 774	Basic Properties 791		
Phosphorylation of Glucose 774	Amino Acids 791		
Storage of Glycogen in Liver and Muscle 774	Transport and Storage of Amino Acids 791		
Glycogenesis 774	Blood Amino Acids 791		
Removal of Stored Glycogen—Glycogenolysis 774	Storage of Amino Acids as Proteins in the Cells 793		
Release of Energy from the Glucose Molecule by the	Functional Roles of the Plasma Proteins 793		
Glycolytic Pathway 775	Essential and Nonessential Amino Acids 794		
Glycolysis; The Formation of Pyruvic Acid 775	Use of Proteins for Energy 794		

Conversion of Pyruvic Acid to Acetyl Coenzyme A 775

Citric Acid Cycle 775

Obligatory Degradation of Proteins 795

Hormonal Regulation of Protein Metabolism 795

CHAPTER 70

The Liver as an Organ 797

Physiologic Anatomy of the Liver 797

The Hepatic Vascular and Lymph Systems 797

Blood Flows Through the Liver from the Portal Vein and Hepatic Artery 797

The Liver Functions as a Blood Reservoir 798

The Liver Has Very High Lymph Flow 798

Hepatic Macrophage System Serves a Blood-Cleansing

Function 798

Metabolic Functions of the Liver 798

Carbohydrate Metabolism 798

Fat Metabolism 799

Protein Metabolism 799

Miscellaneous Metabolic Functions of the Liver 799

Measurement of Bilirubin in the Bile as a Clinical Diagnostic Tool 800

Jaundice—Excess Bilirubin in the Extracellular Fluid 800

CHAPTER 71

Dietary Balances; Regulation of Feeding; Obesity and Starvation; Vitamins and Minerals 803

Energy Intake and Output Are Balanced Under Steady-State Conditions 803

Dietary Balances 803

Energy Available in Foods 803

Methods for Determining Metabolic Utilization of Proteins, Carbohydrates, and Fats 804

Regulation of Food Intake and Energy Storage 804

Neural Centers Regulate Food Intake 805

Factors That Regulate Quantity of Food Intake 806

Obesity 807

Abnormal Feeding Regulation as a Pathological Cause of Obesity 808

Treatment of Obesity 808

Inanition 808

Starvation 809

Vitamins 809

Vitamin A 809

Thiamine (Vitamin B_I) 810

Niacin 810

Riboflavin (Vitamin B_2) 810

Vitamin B_{12} 811

Folic Acid (Pteroylglutamic Acid) 811

Pyridoxine (Vitamin B_6) 811

Pantothenic Acid 811

Ascorbic Acid (Vitamin C) 812

Vitamin D 812

Vitamin E 812

Vitamin K 812

Mineral Metabolism 812

CHAPTER 72

Energetics and Metabolic Rate 815

Adenosine Triphosphate (ATP) Functions as an "Energy Currency" in Metabolism 815

Phosphocreatine Functions as an Accessory Storage Depot for Energy and as an "ATP Buffer" 816

Anaerobic Versus Aerobic Energy 816

Summary of Energy Utilization by the Cells 817

Control of Energy Release in the Cell 817

Metabolic Rate 818

Measurement of the Whole-Body Metabolic Rate 818

Energy Metabolism—Factors That Influence Energy

Output 819

Overall Energy Requirements for Daily Activities 819

Basal Metabolic Rate (BMR)—The Minimum Energy

Expenditure for the Body to Exist 819

Energy Used for Physical Activities 820

Energy Used for Processing Food—Thermogenic Effect of

Food 821

Energy Used for Nonshivering Thermogenesis—Role of Sympathetic Stimulation 821

CHAPTER 73

Body Temperature, Temperature Regulation, and Fever 822

Normal Body Temperature 822

Body Temperature Is Controlled by Balancing Heat Production Against Heat Loss 822

Heat Production 822

Heat Loss 822

Regulation of Body Temperature—Role of the

Hypothalamus 826

Neuronal Effector Mechanisms That Decrease or Increase Body Temperature 827

Concept of a "Set-Point" for Temperature Control 829

Behavioral Control of Body Temperature 830 Local Skin Temperature Reflexes 830

Abnormalities of Body Temperature Regulation 830

Fever 830

Exposure of the Body to Extreme Cold 832

UNIT XIV

Endocrinology and Reproduction

CHAPTER 74

Introduction to Endocrinology 836

Coordination of Body Functions by Chemical Messengers 836

Chemical Structure and Synthesis of Hormones 836

Hormone Secretion, Transport, and Clearance from the Blood 837

Feedback Control of Hormone Secretion 839

Transport of Hormones in the Blood 840

"Clearance" of Hormones from the Blood 840

Mechanisms of Action of Hormones 840

Hormone Receptors and Their Activation 840

Intracellular Signaling After Hormone Receptor

Activation 841

Second Messenger Mechanisms for Mediating Intracellular Hormonal Functions 841

Hormones That Act Mainly on the Genetic Machinery of the Cell 843

Measurement of Hormone Concentrations in the Blood 844

Radioimmunoassay 844

CHAPTER 75

The Pituitary Hormones and Their Control by the Hypothalamus 846

The Pituitary Gland and Its Relation to the Hypothalamus 846

The Hypothalamus Controls Pituitary Secretion 847

Hypothalamic-Hypophysial Portal System 848 Physiologic Functions of Growth Hormone 849 Growth Hormone Promotes Growth of Many Body Tissues 849 Growth Hormone Has Several Metabolic Effects 849 Growth Hormone Stimulates Cartilage and Bone Growth 850 Growth Hormone Exerts Much of Its Effect Through Intermediate Substances Called "Somatomedins" (Also Called "Insulin-like Growth Factors") 851 Regulation of Growth Hormone Secretion 851 Abnormalities of Growth Hormone Secretion 853 The Posterior Pituitary Gland and Its Relation to the Hypothalamus 854 Chemical Structures of ADH and Oxytocin 855 Physiologic Functions of ADH 855 Oxytocic Hormone 856

CHAPTER 76

The Thyroid Metabolic Hormones 858

Synthesis and Secretion of the Thyroid Metabolic
Hormones 858

Iodine Is Required for Formation of Thyroxine 858

Iodide Pump (Iodide Trapping) 858

Thyroglobulin, and Chemistry of Thyroxine and

Triiodothyronine Formation 859

Release of Thyroxine and Triiodothyronine from the Thyroid Gland 859

Transport of Thyroxine and Triiodothyronine to the Tissues 860

Physiologic Functions of the Thyroid Hormones 861

Thyroid Hormones Increase the Transcription of Large

Numbers of Genes 861

Thyroid Hormones Increase Cellular Metabolic Activity 861

Effect of Thyroid Hormone on Growth 861
Effects of Thyroid Hormone on Specific Bodily
Mechanisms 862

Regulation of Thyroid Hormone Secretion 864

Anterior Pituitary Secretion of TSH Is Regulated by
Thyrotropin-Releasing Hormone from the
Hypothalamus 864

Feedback Effect of Thyroid Hormone to Decrease Anterior Pituitary Secretion of TSH 865

Antithyroid Substances 865

Diseases of the Thyroid 865

Hyperthyroidism 865

Hypothyroidism 867

CHAPTER 77

The Adrenocortical Hormones 869

Synthesis and Secretion of Adrenocortical Hormones 869
Functions of the Mineralocorticoids—Aldosterone 872
Renal and Circulatory Effects of Aldosterone 872
Aldosterone Stimulates Sodium and Potassium Transport in Sweat Glands, Salivary Glands, and Intestinal Epithelial Cells 873
Cellular Mechanism of Aldosterone Action 873
Regulation of Aldosterone Secretion 874
Functions of the Glucocorticoids 875
Effects of Cortisol on Carbohydrate Metabolism 875

Effects of Cortisol on Protein Metabolism 875
Effects of Cortisol on Fat Metabolism 876
Cortisol Is Important in Resisting Stress and
Inflammation 876
Other Effects of Cortisol 878
Cellular Mechanism of Cortisol Action 878
Regulation of Cortisol Secretion by Adrenocorticotropic
Hormone from the Pituitary Gland 878
Adrenal Androgens 880
Abnormalities of Adrenocortical Secretion 880
Hypoadrenalism—Addison's Disease 880
Hyperadrenalism—Cushing's Syndrome 881
Primary Aldosteronism (Conn's Syndrome) 882
Adrenogenital Syndrome 883

CHAPTER 78

Insulin, Glucagon, and Diabetes Mellitus 884

Insulin and Its Metabolic Effects 884

Effect of Insulin on Carbohydrate Metabolism 886

Effect of Insulin on Fat Metabolism 887

Effect of Insulin on Protein Metabolism and on

Growth 889

Control of Insulin Secretion 890

Other Factors That Stimulate Insulin Secretion 891

Role of Insulin (and Other Hormones) in "Switching"

Between Carbohydrate and Lipid Metabolism 891

Glucagon and Its Functions 891

Effects on Glucose Metabolism 892

Regulation of Glucagon Secretion 892
Somatostatin Inhibits Glucagon and Insulin Secretion 893

Summary of Blood Glucose Regulation 893
Diabetes Mellitus 894

Type I Diabetes—Lack of Insulin Production by Beta Cells of the Pancreas 894

Type II Diabetes—Resistance to the Metabolic Effects of Insulin 895

Physiology of Diagnosis 896
Treatment of Diabetes 896
Insulinoma—Hyperinsulinism 897

CHAPTER 79

Parathyroid Hormone, Calcitonin, Calcium and Phosphate Metabolism, Vitamin D, Bone, and Teeth 899

Overview of Calcium and Phosphate Regulation in the
Extracellular Fluid and Plasma 899

Calcium in the Plasma and Interstitial Fluid 899

Inorganic Phosphate in the Extracellular Fluids 899

Non-bone Physiologic Effects of Altered Calcium and
Phosphate Concentrations in the Body Fluids 900

Absorption and Excretion of Calcium and Phosphate 900

Bone and Its Relation to Extracellular Calcium and
Phosphate 901

Precipitation and Absorption of Calcium and Phosphate in Bone—Equilibrium with the Extracellular Fluids 902 Calcium Exchange Between Bone and Extracellular Fluid 902

Deposition and Absorption of Bone—Remodeling of Bone 903

Vitamin D 904

Actions of Vitamin D 905

Parathyroid Hormone 906

Effect of Parathyroid Hormone on Calcium and Phosphate Concentrations in the Extracellular Fluid 906 Control of Parathyroid Secretion by Calcium Ion

Concentration 908

Calcitonin 908

Summary of Control of Calcium Ion Concentration 909 Pathophysiology of Parathyroid Hormone, Vitamin D, and

Bone Disease 910

Hypoparathyroidism 910

Primary Hyperparathyroidism 910

Secondary Hyperparathyroidism 911

Rickets-Vitamin D Deficiency 911

Osteoporosis—Decreased Bone Matrix 912

Physiology of the Teeth 912

Function of the Different Parts of the Teeth 912

Dentition 913

Mineral Exchange in Teeth 914

Dental Abnormalities 914

CHAPTER 80

Reproductive and Hormonal Functions of the Male (and Function of the Pineal Gland) 916

Physiologic Anatomy of the Male Sexual Organs 916 Spermatogenesis 916

Steps of Spermatogenesis 916

Function of the Seminal Vesicles 918

Function of the Prostate Gland 918

Semen 919

Abnormal Spermatogenesis and Male Fertility 920

The Male Sexual Act 921

Neuronal Stimulus for Performance of the Male Sexual Act 921

Stages of the Male Sexual Act 921

Testosterone and Other Male Sex Hormones 922

Secretion, Metabolism, and Chemistry of the Male Sex Hormone 922

Functions of Testosterone 923

Basic Intracellular Mechanism of Action of Testosterone 925

Control of Male Sexual Functions by Hormones from the Hypothalamus and Anterior Pituitary Gland 925

Abnormalities of Male Sexual Function 926

The Prostate Gland and Its Abnormalities 926

Hypogonadism in the Male 927

Testicular Tumors and Hypergonadism in the Male 927

The Pineal Gland—Its Function in Controlling Seasonal Fertility in Some Animals 927

CHAPTER 81

Female Physiology Before Pregnancy; and the Female Hormones 929

Physiologic Anatomy of the Female Sexual Organs 929 Female Hormonal System 929

The Monthly Ovarian Cycle; Function of the Gonadotropic Hormones 929

Gonadotropic Hormones and Their Effects on the Ovaries 930

Ovarian Follicle Growth—The "Follicular" Phase of the Ovarian Cycle 930

The Corpus Luteum—The "Luteal" Phase of the Ovarian Cycle 932

Summary 933

Functions of the Ovarian Hormones—Estradiol and Progesterone 933

Chemistry of the Sex Hormones 933

Functions of the Estrogens—Their Effects on the Primary and Secondary Female Sex Characteristics 934

Functions of Progesterone 936

The Monthly Endometrial Cycle and Menstruation 936

Regulation of the Female Monthly Rhythm—Interplay Between the Ovarian and Hypothalamic-Pituitary Hormones 937

Feedback Oscillation of the Hypothalamic-Pituitary-Ovarian System 938

Puberty and Menarche 939

Menopause 940

Abnormalities of Secretion by the Ovaries 940

The Female Sexual Act 941

Female Fertility 941

CHAPTER 82

Pregnancy and Lactation 944

Maturation and Fertilization of the Ovum 944

Transport of the Fertilized Ovum in the Fallopian Tube 945

Implantation of the Blastocyst in the Uterus 945

Early Nutrition of the Embryo 945

Function of the Placenta 946

Developmental and Physiologic Anatomy of the Placenta 946

Hormonal Factors in Pregnancy 948

Human Chorionic Gonadotropin and Its Effect to Cause Persistence of the Corpus Luteum and to Prevent Menstruation 948

Secretion of Estrogens by the Placenta 949

Secretion of Progesterone by the Placenta 949

Human Chorionic Somatomammotropin 949

Other Hormonal Factors in Pregnancy 950

Response of the Mother's Body to Pregnancy 950 Parturition 952

Increased Uterine Excitability Near Term 952

Onset of Labor—A Positive Feedback Theory for Its Initiation 952

Abdominal Muscle Contractions During Labor 953

Mechanics of Parturition 953

Separation and Delivery of the Placenta 954

Labor Pains 954

Involution of the Uterus After Parturition 954

Lactation 954

Development of the Breasts 954

Initiation of Lactation—Function of Prolactin 955

Ejection (or "Let-Down") Process in Milk Secretion—

Function of Oxytocin—956

Milk Composition and the Metabolic Drain on the Mother

Caused by Lactation 956

CHAPTER 83 Fetal and Neonatal Physiology 958

Growth and Functional Development of the Fetus 958

Development of the Organ Systems 958

Adjustments of the Infant to Extrauterine Life 960

Onset of Breathing 960

xxxii Contents

Circulatory Readjustments at Birth 960 Nutrition of the Neonate 962 Special Functional Problems in the Neonate 962 Respiratory System 962 Circulation 962 Fluid Balance, Acid-Base Balance, and Renal Function 963 Liver Function 963 Digestion, Absorption, Metabolism of Energy Foods, and Nutrition 963 Immunity 964 Endocrine Problems 964 Special Problems of Prematurity Immature Development of the Premature Infant 965 Instability of the Homeostatic Control Systems in the Premature Infant 965 Danger of Blindness Caused by Excess Oxygen Therapy in the Premature Infant 965 Growth and Development of the Child 965 Behavioral Growth 965

UNIT XV Sports Physiology

CHAPTER **84**Sports Physiology 968

The Female and the Male Athlete 968

The Muscles in Exercise 968

Strength, Power, and Endurance of Muscles 968

Muscle Metabolic Systems in Exercise 969

Nutrients Used During Muscle Activity 972

Effect of Athletic Training on Muscles and Muscle

Performance 972

Respiration in Exercise 973
The Cardiovascular System in Exercise 975
Body Heat in Exercise 976
Body Fluids and Salt in Exercise 977
Drugs and Athletes 977
Body Fitness Prolongs Life 977

Index 979