

Programming Massively Parallel Processors, 1st Edition : A Hands-on Approach
Kirk, David
ISBN: 9780123814722

Chapter 1: Introduction

1.1 GPUs as Parallel Computers

1.2 Architecture of a Modern GPU

1.3 Why More Speed or Parallelism?

1.4 Parallel Programming Languages and Models

1.5 Overarching Goals

1.6 Organization of the Book

Chapter 2: History of GPU Computing

2.1. Evolution of Graphics Pipelines

The Era of Fixed Function Graphics Pipeline

Evolution of Programmable Real-Time Graphics

Unified Graphics and Computing Processors

2.2. GPGPU: an Intermediate Step

Scalable GPUs

Recent Developments

Future Trends

Chapter 3: Introduction to CUDA

3.1. Data Parallelism

3.2. CUDA Program Structure

3.3. A Matrix-Matrix Multiplication Example

3.4. Device Memories and Data Transfer

3.5. Kernel Functions and Threading

3.6. Summary

Function Declarations

Kernel Launch

Predefined Variables

Runtime API

Chapter 4: CUDA Threads

4.1. CUDA Thread Organization

4.2. More on BlockIdx and ThreadIdx

4.3. Synchronization and Transparent Scalability

4.4. Thread Assignment

4.5. Thread Scheduling and Latency Tolerance

4.6. Summary

Chapter 5: CUDA Memories

5.1. Importance of Memory Access Efficiency

5.2. CUDA Device Memory Types

5.3. A Strategy for Reducing Global Memory Traffic

5.4. Memory as a Limiting Factor to Parallelism

5.5. Summary

Chapter 6: Performance Considerations

6.1. More on Thread Execution

6.2. Global Memory Bandwidth

6.3. Dynamic Partitioning of SM Resources

6.4. Data Prefetching

6.5. Instruction Mix

6.6. Thread Granularity

6.7. Measured Performance and Summary

Chapter 7: Floating-Point Considerations

7.1. Floating-Point Format

Normalized representation of M

Excess encoding of E

7.2. Representable Numbers

7.3. Special Bit Patterns and Precision

7.4. Arithmetic Accuracy and Rounding

7.5. Algorithm Considerations

7.6. Summary

Chapter 8: Application Case Study I - Advanced MRI Reconstruction

8.1. Application Background

8.2. Iterative Reconstruction

8.3. Computing FHd

Step 1: Determine the Kernel Parallelism Structure

Step 2: Getting Around the Memory Bandwidth Limitation

Step 3: Use Hardware Trigonometry Functions

Step 4: Experimental Performance Testing

8.4. Final Evaluation

Chapter 9: Application Case Study II - Molecular Visualization and Analysis

9.1. Application Background

9.2. A Simple Kernel Implementation

9.3. Instruction Execution Efficiency

9.4. Memory Coalescing

9.5. Additional Performance Comparisons

9.6. Using Multiple GPUs

Chapter 10: Parallel Programming and Computational Thinking

10.1. Goals of Parallel Programming

10.2. Problem Decomposition

10.3. Algorithm Selection

10.4. Computational Thinking

Chapter 11: A Brief Introduction to OpenCL ™

11.1. Background

11.2. Data Parallelism Model

11.3. Device Architecture

11.4. Kernel Functions

11.5. Device Management and Kernel Launch

11.6. Electrostatic Potential Map in OpenCL

11.7. Summary

Chapter 12: Conclusion and Future Outlook

12.1. Goals Revisited

12.2. Memory Architecture Evolution

12.3. Kernel Execution Control Evolution

12.4. Core Performance

12.5. Programming Environment

12.6. A Bright Outlook

Appendix A: Matrix Multiplication Example Code

Appendix B: Speed and feed of current generation CUDA devices

